
CHAPTER 6

Linear Operators and Functionals

In this chapter we discuss one of the central concepts of functional analy-
sis — linear operators. We first establish the three most important results about
general linear operators: the Banach–Steinhaus theorem, Banach’s inverse map-
ping theorem, and the closed graph theorem. Next we proceed to considering
linear functionals, i.e., operators with scalar values. The main results about lin-
ear functionals are connected with the Hahn–Banach theorem and its corollaries.
A discussion of compact operators completes the main part of this chapter.

6.1. The Operator Norm and Continuity

Let (X, ‖ · ‖
X

) and (Y, ‖ · ‖
Y

) be normed spaces and let A : X → Y be a
linear mapping, i.e., A(αx+ βy) = αAx+ βAy. Linear mappings are also called
linear operators. If X = Y , then the operator I : x 7→ x is called the identity or
the unit operator. Linear mappings with values in Y = IR or Y = C are called
linear functionals. Set

‖A‖ := sup
‖x‖

X
61

‖Ax‖
Y

if this quantity is finite. We shall call ‖A‖ the operator norm of A. For example,
the norm of a linear functional l is defined by the equality

‖l‖ := sup
‖x‖

X
61

|l(x)|.

A linear operator with finite norm is called bounded. It should be noted that
this terminology is not consistent with the terminology for the case of general
mappings, when a mapping is called bounded provided that its image is bounded.
For a bounded linear operator A only the image of the ball is bounded, but the
image RanA := A(X) of the whole space , called the range of the operator A,
can be bounded only when A(X) = 0.

We observe that ‖A‖ is the smallest number M such that ‖Ax‖
Y

6 M‖x‖
X

for all x ∈ X . It is also clear that in the definition of ‖A‖ we can take sup over
the unit sphere in place of the unit ball (if X 6= 0).

If X,Y, Z are normed spaces, A : Y → Z and B : X → Y are bounded
linear operators, then the linear operator AB : X → Z is obviously bounded and

‖AB‖ 6 ‖A‖ ‖B‖.
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188 Chapter 6. Linear Operators and Functionals

This inequality can be strict; it is easy to construct an example in IR2 or C2 (say,
the composition of nonzero operators can be zero).

The set L(X,Y ) of all bounded linear operators acting from a normed space
X to a normed space Y is a normed space with the operator norm A 7→ ‖A‖. This
space is obviously linear, since the algebraic sum of two bounded sets is bounded
and the product of a bounded set by a scalar is bounded. It is proved below that a
linear operator is bounded if and only if it is continuous (which is obviously false
in both directions for nonlinear mappings).

The fact that the space of operators is normed follows at once from the rela-
tions ‖(A + B)x‖

Y
6 ‖Ax‖

Y
+ ‖Bx‖

Y
and ‖λAx‖

Y
= |λ| ‖Ax‖

Y
. The main

results of this chapter are connected with the operator norm. A particular role is
played by the case where Y is the scalar field.

6.1.1. Definition. Let X be a normed space. The space X∗ := L(X, IR) (or
X∗ := L(X,C) in the complex case) of all continuous linear functionals on the
space X is called the dual (or topological dual) to the space X . The space X ′ of
all linear functions on X is called the algebraic dual.

The value of a linear functional f on a vector x is frequently denoted by
〈f, x〉. On concrete spaces it is easy to construct explicit examples of nonzero
continuous functionals. It turns out that such functionals exist on every nonzero
normed space. This highly non-obvious, but very important for the whole theory
fact will be established below in §6.4 with the aid of the Hahn–Banach theorem.
Algebraic duals are used relatively seldom.

6.1.2. Theorem. For a linear operator A : X → Y , the following conditions
are equivalent:

(i) the operator A is bounded;
(ii) the operator A is continuous;
(iii) the operator A is continuous at some point.

PROOF. If the operator A is bounded, then ‖Ax − Ay‖ 6 ‖A‖‖x − y‖, i.e.,
the mapping A satisfies the Lipschitz condition with constant ‖A‖ and hence is
continuous. Suppose that the operator A is continuous at some point x0. The
equality Ax = A(x − x0) + Ax0 yields the continuity of A at the origin. Hence
there exists r > 0 such that ‖Ax‖ 6 1 whenever ‖x‖ 6 r. This gives the estimate
‖Ax‖ 6 r−1 whenever ‖x‖ 6 1. Thus, ‖A‖ 6 r−1. �

6.1.3. Corollary. A linear mapping between normed spaces is continuous
precisely when it takes sequences converging to zero to bounded sequences.

PROOF. The necessity of this condition is obvious, its sufficiency follows
from the fact that if ‖xn‖ 6 1 and ‖Axn‖ → ∞, then yn := ‖Axn‖−1/2xn → 0
and ‖Ayn‖ = ‖Axn‖1/2 →∞. �

According to the established properties, a linear mapping discontinuous at one
point is discontinuous everywhere. On a finite-dimensional normed space all linear
operators are continuous, hence are bounded. In the infinite-dimensional case the
situation is different.
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6.1.4. Example. On every infinite-dimensional normed space there exists a
discontinuous linear functional. Indeed, let {vα} be a Hamel basis consisting of
vectors of unit length. Let us pick in this basis a countable part {vn}, set l(vn) = n
for every n, on the remaining elements of the basis make l zero and extend by
linearity to the whole space. It is clear that we have obtained an unbounded linear
functional. It is discontinuous at every point by the previous theorem.

On some incomplete normed spaces one can construct explicitly (without us-
ing Hamel bases) discontinuous linear functionals. For example, on the space of
continuous functions on [0, 1] one can take the norm from L2[0, 1] and define l by
the formula l(x) = x(0). However, there are no explicit examples of unbounded
linear functionals on Banach spaces.

Let us consider some examples of evaluation of norms of functionals and
operators.

6.1.5. Example. (i) Let X = C[0, 1] be equipped with the usual sup-norm
and let l(f) = f(0). Then ‖l‖ = 1, since |l(f)| 6 1 if ‖f‖ 6 1 and l(1) = 1.

(ii) Let X = C[0, 1] be equipped with the usual sup-norm and let us set
l(f) = f(0) − f(1). Then ‖l‖ = 2, since |l(f)| 6 2 if ‖f‖ 6 1 and l(f) = 2 for
the function f : t 7→ 1 − 2t.

(iii) Let X = C[0, 1] be equipped with the usual norm and let

l(f) =
∫ 1

0

f(t)g(t) dt, (6.1.1)

where g(t) = −1 if t 6 1/2, g(t) = 1 if t > 1/2. Then ‖l‖ = 1, since |l(f)| 6 1 if
‖f‖ 6 1, and for every ε > 0 there exists a continuous function f with |f(t)| 6 1
and l(f) > 1 − ε. We observe that in this example there is no element f with
‖f‖ 6 1 such that l(f) = ‖l‖, i.e., a continuous linear functional can fail to attain
its maximum on a closed ball.

More generally, for every integrable function g on [0, 1] for the functional
defined in (6.1.1) we have

‖l‖ = ‖g‖L1 =
∫ 1

0

|g(t)| dt.

The bound ‖l‖ 6 ‖g‖L1 is obvious, and for the proof of the equality it suffices
to observe that for every ε > 0 there exists a step function gε on [0, 1] such that
‖g − gε‖L1 6 ε. Similarly to the previous case we observe that there exists a
function fε ∈ C[0, 1] with ‖fε‖ 6 1 and∫ 1

0

fε(t)gε(t) dt > ‖gε‖L1 − ε.

This gives

l(fε) >
∫ 1

0

fε(t)gε(t) dt− ε > ‖g‖L1 − 3ε,

because we have ‖gε‖L1 > ‖g‖L1 − ε. Since ε was arbitrary, we obtain the
opposite estimate ‖l‖ > ‖g‖L1 .



190 Chapter 6. Linear Operators and Functionals

(iv) Let X be a Euclidean space and let l(x) = (x, a), where a ∈ X . Then
we have ‖l‖ = ‖a‖, since |l(x)| 6 ‖x‖‖a‖, which gives ‖l‖ 6 ‖a‖. On the other
hand, if a 6= 0, then l(a/‖a‖) = ‖a‖.

(v) Let X = L2[0, 1] be equipped with the usual norm and let

l(f) =
∫ 1

0

f(t)g(t) dt,

where g ∈ L2[0, 1]. Then ‖l‖ = ‖g‖L2 .
(vi) Let X = C[0, 1] and Y = L2[0, 1] be equipped with their usual norms

and let

Ax(t) =
(∫ 1

0

x(s)y(s) ds
)
ψ(t),

where y ∈ L1[0, 1], ψ ∈ L2[0, 1]. Then ‖A‖ = ‖y‖L1‖ψ‖L2 . This follows
from (iii) and the equality

‖Ax‖ =
∣∣∣∣∫ 1

0

x(s)y(s) ds
∣∣∣∣‖ψ‖.

(vii) A diagonal operator on a separable Hilbert space H is an operator of the
form

Ax =
∞∑
n=1

αn(x, en)en,

where {en} is an orthonormal basis in H and {αn} is a bounded sequence in C.
Then ‖A‖ = supn |αn|, since ‖Ax‖ 6 supn |αn| and ‖Aen‖ = |αn|, whence one
has ‖A‖ > supn |αn|.

One should bear in mind that according to (iii) even in the case of a linear
functional on an infinite-dimensional space the norm is not always attained on the
unit ball, so sup cannot be always replaced by max.

We now prove an important result according to which any pointwise bounded
family of continuous operators is uniformly bounded on the unit ball, i.e., is norm
bounded.

6.1.6. Theorem. (THE BANACH–STEINHAUS THEOREM OR THE UNIFORM

BOUNDEDNESS PRINCIPLE) Suppose we are given a family {Aα} of bounded
linear operators on a Banach space X with values in a normed space Y . Suppose
that

sup
α

‖Aαx‖ <∞ for every x ∈ X.

Then sup
α

‖Aα‖ <∞.

PROOF. As in Example 1.5.3 (we could refer to it at once), we consider the
sets

Mn =
{
x ∈ X : ‖Aαx‖ 6 n for all α

}
.

By the continuity of the operators Aα these sets are closed. By our hypothesis they
coverX . According to Baire’s theorem there exists n such that the setMn contains
some ball U(a, r) centered at a with radius r > 0. Since Aαx = Aα(x+a)−Aαa
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and supα ‖Aαa‖ < ∞, we obtain the uniform boundedness of the operators Aα
on the ball U(0, r), which gives their uniform boundedness on the unit ball. �

The completeness of X is essential in this theorem (although the requirement
of completeness can be relaxed to the Baire property of X , which is obvious from
the proof). For example, on the linear subspace in C[0, 1] consisting of functions
vanishing in a neighborhood of zero (its own neighborhood for every function),
the bounded functionals ln(x) = nx(1/n) are pointwise bounded (at every fixed
element x they are zero starting from some number), but their norms are not
uniformly bounded: ‖ln‖ = n. The same is true for the functionals ln(x) = nxn
on the linear subspace in l2 consisting of all vectors with finitely many nonzero
coordinates.

6.1.7. Corollary. Let X and Y be Banach spaces and let An : X → Y
be continuous linear operators such that for every vector x there exists a limit
Ax = lim

n→∞
Anx in Y . Then A is a continuous operator.

PROOF. It is clear that A is a linear mapping. By the Banach–Steinhaus
theorem we have supn ‖An‖ 6 C < ∞. Then ‖Ax‖ = lim

n→∞
‖Anx‖ 6 C‖x‖,

hence ‖A‖ 6 C. �

6.1.8. Corollary. In the situation of the previous corollary for every compact
set K ⊂ X we have

lim
n→∞

sup
x∈K

‖Ax−Anx‖ = 0.

PROOF. We already know that there exists C > 0 such that ‖An‖ 6 C for all
n and that ‖A‖ 6 C. Let ε > 0. Let us take in K a finite ε(4C)−1-net x1, . . . , xk
and take N such that ‖Axi − Anxi‖ 6 ε/2 for i = 1, . . . , k and for all n > N .
Then, for such n, for every x ∈ K we have ‖Ax − Anx‖ 6 ε, since there exists
xi with ‖x− xi‖ 6 ε(4C)−1, which by the triangle inequality gives

‖Ax−Anx‖ 6 ‖Ax−Axi‖ + ‖Axi −Anxi‖ + ‖Anxi −Anx‖
6 2C‖x− xi‖ + ε/2 6 ε,

as required. �

6.1.9. Theorem. Let Y be a Banach space. Then for every normed space X
the space of operators L(X,Y ) is complete with respect to the operator norm.

In particular, the space X∗ is complete for every normed space X (not nec-
essarily complete).

PROOF. Let {An} ⊂ L(X,Y ) be a Cauchy sequence. For every x ∈ X the
sequence {Anx} is Cauchy in Y , since ‖Anx − Akx‖ 6 ‖An − Ak‖‖x‖. Hence
there exists Ax = lim

n→∞
Anx. It is clear that A ∈ L(X,Y ), ‖A‖ 6 supn ‖An‖.

However, we have to show that ‖A − An‖ → 0. Let ε > 0. Let us find N such
that ‖An − Ak‖ 6 ε for all n, k > N . For all n > N and each vector x of unit
norm we have ‖Ax−Anx‖ = lim

k→∞
‖Akx−Anx‖ 6 ε, so ‖A−An‖ 6 ε. �
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Note that in this theorem and in the Banach–Steinhaus theorem we require the
completeness of different spaces. For a beginner it is much easier to remember
both theorems requiring the completeness of both spaces. However, then a moment
reflexion shows that in the Banach–Steinhaus theorem the completeness of Y
is not needed because one can pass to the completion of Y (which preserves
the pointwise boundedness), while in the previous theorem we do not need the
completeness of X , since all operators An can be extended to the completion
of X giving a Cauchy sequence of operators on the completion.

The Banach–Steinhaus theorem can be also applied for obtaining negative
results (which is sometimes called the “principle of condensation of singularities”).

6.1.10. Example. Suppose that a sequence of continuous linear operators An
from a Banach space X to a normed space Y is not norm bounded. Then there
exists an element x ∈ X such that supn ‖Anx‖ = ∞.

6.1.11. Example. For every a ∈ [0, 2π] there exists a continuous 2π-periodic
function for which the partial sums of the Fourier series at the point a are not
uniformly bounded, in particular, have no finite limit.

PROOF. It suffices to consider a = 0. If for every function f in the space C2π

of continuous functions f on [0, 2π] with f(0) = f(2π) the partial sums of the
Fourier series at zero are bounded, then by virtue of representation (4.5.3) for the
partial sums we have the pointwise boundedness of the sequence of functionals

ln(f) :=
∫ 2π

0

f(t)
sin 2n+1

2 t

2 sin t
2

dt.

According to Example 6.1.5 the norm of this functional on C2π equals∫ 2π

0

∣∣∣ sin 2n+1
2 t

2 sin t
2

∣∣∣ dt.
Hence

‖ln‖ >
∫ 2π

0

| sin(n+ 1/2)t|1
t
dt =

∫ (2n+1)π

0

| sin s|1
s
ds,

which tends to infinity as n→∞. �

In applications it is often useful to approximate in a suitable sense or replace
infinite-dimensional operators by finite-dimensional ones. In particular, this is nec-
essary for numeric methods. However, here there are many subtleties connected
with the character of approximation. For example, the identity operator on an
infinite-dimensional space cannot be approximated by finite-dimensional ones with
respect to the operator norm. In §6.9 below we discuss compact operators, which
on nice spaces (such as a Hilbert space) are approximated by finite-dimensional
ones in the operator norm. But it is often sufficient to have some weaker ap-
proximations, for example, pointwise. This becomes possible for every bounded
operator on a space with a Schauder basis; this question is discussed in §6.10(iv).
In a Hilbert space with an orthonormal basis {en}, for every bounded operator A
we have PnAx → Ax for all x, where Pn is the orthogonal projection onto the
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linear span of e1, . . . , en, i.e., Pnx = (x, e1)e1 + · · · + (x, en)en. Let us give a
less trivial example.

6.1.12. Example. Let C2π be the space of all continuous 2π-periodic func-
tions on the real line with the sup-norm and let σn be the operator taking a function
f to its Fejér sum

σn(f)(x) :=
∫ 2π

0

f(x+ z)Φn(z) dz,

where Φn is the nth Fejér kernel (see (4.5.5)). Then by Theorem 4.5.9 we have
‖f − σn(f)‖ → 0 for all f ∈ C2π . Therefore, for every bounded operator A
with values in C2π , we obtain the pointwise convergence ‖Ax − σn◦Ax‖ → 0.
A similar fact is true for the space C[0, 1]. For this it suffices to observe that
the space C[0, π] can be embedded into C2π by the mapping f 7→ f̃ , where
f̃(t) = f(−t) for all t ∈ [−π, 0], next f̃ extends periodically.

We recall that according to Corollary 6.1.8 the pointwise convergence of op-
erators on a Banach space yields the uniform convergence on compact sets, which
increases the effect of such approximations.

6.2. The Closed Graph Theorem

The next result due to Banach and Schauder is fundamental for many other
important results connected with operator ranges.

6.2.1. Lemma. Let X and Y be Banach spaces with open unit balls U
X
and

U
Y
and let A : X → Y be a continuous linear operator such that U

Y
is contained

in the closure of A(U
X

). Then U
Y
⊂ A(U

X
). In particular, A(X) = Y .

PROOF. It follows from our assumption that

A(sU
X

) ∩ sU
Y
is dense in sU

Y
for every s > 0. (6.2.1)

Let y ∈ U
Y
and 0 < ε < 1−‖y‖. Then ‖(1−ε)−1y‖ < 1. Hence there is a vector

x1 ∈ UX
for which ‖(1 − ε)−1y −Ax1‖ < ε, i.e., (1 − ε)−1y −Ax1 ∈ εUY

. By
condition (6.2.1) there is a vector x2 ∈ εUX

with ‖(1−ε)−1y−Ax1−Ax2‖ < ε2.
By induction with the aid of (6.2.1) we find xn ∈ εn−1U

X
with

‖(1 − ε)−1y −Ax1 − . . .−Axn‖ < εn.

Then y = (1−ε)
∑∞
n=1Axn. By the estimate ‖xn‖ < εn−1 and the completeness

of X the series (1 − ε)
∑∞
n=1 xn converges to some element x ∈ X . We have

Ax = y and ‖x‖ < (1 − ε)
∑∞
n=1 ε

n−1 = 1, that is, x ∈ U
X
. Thus, we have

proved the inclusion U
Y
⊂ A(U

X
). �

6.2.2. Remark. We have used only the completeness of X . On the way we
have obtained the following fact: if a set S is dense in U

Y
, then every vector

y ∈ U
Y
has the form y =

∑∞
n=1 cnsn, where sn ∈ S,

∑∞
n=1 |cn| < 1.

The next important theorem was obtained by Banach and Schauder.
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6.2.3. Theorem. (THE OPEN MAPPING THEOREM) Let X and Y be Banach
spaces, A ∈ L(X,Y ), and A(X) = Y . Then for every set V open in X the set
A(V ) is open in Y .

PROOF. Let U
X

and U
Y
be open unit balls in X and Y , respectively. Since

Y =
⋃∞
n=1A(nU

X
), by Baire’s theorem there exists k such that the set A(kU

X
)

is dense in some open ball a + rU
Y

of radius r > 0 in Y . Since we have
A(kU

X
) = −A(kU

X
), the set A(kU

X
) is dense in the ball −a + rU

Y
. Hence

A(kU
X

) is dense in the ball rU
Y
. Indeed, if ‖y‖

Y
6 r and un, vn ∈ UX

are such
that A(kun) → a + y and A(kvn) → −a + y, then wn := (un + vn)/2 ∈ U

X

and A(kwn) → y. Replacing A by r−1kA, we can assume that A(U
X

) is dense
in the ball U

Y
. By the lemma proved above U

Y
⊂ A(U

X
). Therefore, we have

Ax+ rU
Y
⊂A(x+ rU

X
), x∈X , r > 0.

Suppose now that V is a nonempty open set in X . Let y ∈ A(V ), i.e.,
y = Ax, x ∈ V . Find ε > 0 such that x+ εU

X
⊂ V . Then

y + εU
Y
⊂ A(x+ εU

X
) ⊂ A(V ).

Thus, A(V ) is open. For a generalization, see Exercise 12.5.31. �

6.2.4. Remark. (i) It is seen from the proof that in place of the surjectivity of
A it suffices that A(X) be a second category set in Y (then A(U

X
) will be dense

in some ball in Y ). In place of completeness of Y it suffices to have the Baire
property for Y , but for arbitrary normed spaces Y the theorem is not valid: take
the diagonal operator A on X = l2 with eigenvalues n−1 and Y = A(X) with the
norm from l2.

(ii) Since the image of the unit ball from X contains some ball UY (0, ε)
centered at the origin, we obtain that for every y ∈ Y there exists a vector x ∈ X
such that

Ax = y and ‖x‖ 6 ε−1‖y‖.
Of course, such a vector is not always unique.

An important corollary is the following result of Banach.

6.2.5. Theorem. (THE INVERSE MAPPING THEOREM) Let A be a one-to-one
continuous linear mapping of a Banach space X onto a Banach space Y . Then
the inverse mapping A−1 is continuous.

PROOF. The preimage under A−1 of an open set V in X coincides with A(V )
(because A is one-to-one) and is open in Y by the previous theorem. Hence A−1

is continuous. �

For nonlinear mappings A this theorem is false (Exercise 6.10.109).

6.2.6. Corollary. Let X be a linear space that is complete with respect to two
norms p1 and p2. Suppose that there exists a number c such that p1(x) 6 cp2(x)
for all x ∈ X . Then exists a numberM such that p2(x) 6 Mp1(x) for all x ∈ X .

PROOF. By assumption the identity mapping of X with norm p2 to X with
norm p1 is continuous. Hence the inverse mapping is continuous as well, i.e., it
has finite norm, which means the existence of a desired number M . �
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For formulating yet another important corollary of the open mapping theorem
we introduce a new object.

The graph of a mapping A : X → Y is the set

Γ(A) := {(x,Ax) : x ∈ X} ⊂ X×Y.
If X and Y are Banach spaces, then the product X×Y is equipped with the natural
structure of a linear space and the natural norm ‖(x, y)‖ := ‖x‖ + ‖y‖. It is clear
that X×Y is complete with respect to this norm.

6.2.7. Theorem. (THE CLOSED GRAPH THEOREM) A linear mapping be-
tween Banach spaces is continuous precisely when its graph is closed.

PROOF. It is obvious that the graph of every continuous mapping is closed.
The converse is false for nonlinear mappings. For a linear mapping A : X→Y
with a closed graph we observe that this graph is a linear subspace in X×Y and
hence is a Banach space. The operator T : Γ(A) → X , (x,Ax) 7→ x is linear,
continuous and maps Γ(A) one-to-one onto X . By the inverse mapping theorem
the operator x 7→ (x,Ax) is continuous. This yields the continuity of A. �

6.2.8. Corollary. Let X,Y, Z be Banach spaces and let j : Y → Z be an
injective continuous linear operator. Suppose that A : X → Y is a linear mapping
such that the composition j◦A : X → Z is continuous, i.e.,

X
A−→ Y

j−→ Z

is a continuous mapping. Then A is continuous.

PROOF. We verify that the graph of A is closed. Let xn → x in X and
Axn → y in Y . It follows from our condition that

j(Axn) → j(y), j(Axn) = j◦A(xn) → j◦A(x).

Hence j(y) = j◦A(x), whence y = Ax. �

Let us give some typical examples of using the results obtained above.

6.2.9. Example. Let A : L2[a, b] → L2[a, b] be a continuous linear operator
such that A(L2[a, b]) ⊂ C[a, b]. Then the operator A is continuous as a mapping
from L2[a, b] to C[a, b].

6.2.10. Example. Suppose that a Banach space X is represented as a direct
algebraic sum of its closed subspaces X1 and X2. Then the operators of algebraic
projections P1 : X → X1 and P2 : X → X2 are continuous.

PROOF. Let us consider X as the Banach direct sum X1⊕X2 with the norm
(x1, x2) 7→ ‖x1‖ + ‖x2‖. Since we always have ‖x1 + x2‖ 6 ‖x1‖ + ‖x2‖,
Corollary 6.2.6 shows that the new norm is equivalent to the original one. The
projections are obviously continuous with respect to the new norm, hence they are
continuous also with respect to the original one. �

One should bear in mind that the algebraic direct sum of two closed linear
subspaces of a Banach space need not be closed (see Exercise 6.10.98). The
previous example has the following interesting generalization.
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6.2.11. Proposition. Let X1 and X2 be closed subspaces of a Banach
space X such that X = X1 + X2 (the sum is not supposed to be direct un-
like the previous example). Then there exists a number c > 0 such that every
element x ∈ X admits a representation

x = x1 + x2, where ‖x1‖ + ‖x2‖ 6 c‖x‖.

PROOF. Denote by Y the direct sum of the Banach spaces X1 and X2. The
mapping T : Y → X defined by the formula T (x1, x2) = x1 + x2 is linear,
continuous and surjective. The open mapping theorem yields that the image of the
unit ball in Y contains a ball in X of some radius r > 0. Now it suffices to take
the number c := r−1. �

Let us prove one more useful result following from the already established
facts. We observe that if X and Y are normed spaces, then any continuous linear
operator A : X → Y with the kernel KerA := A−1(0) generates an injective
linear operator

Ã : X/KerA→ Y,

called the factorization of A by its kernel and defined by the formula Ã[x] := Ax,
where [x] is the equivalence class in X/KerA with a representative x. We have
Ã(X/KerA) = A(X) and ‖Ã‖ = ‖A‖. The first equality is obvious, the second
one us verified as follows: since ‖[x]‖ 6 ‖x‖, we have ‖Ã‖ > ‖A‖. On the
other hand, if ‖[x]‖ = 1 and ε > 0, then there exists a representative y of the
equivalence class [x] with ‖y‖ 6 1 + ε, whence ‖Ã[x]‖ = ‖Ay‖ 6 (1 + ε)‖A‖.
Hence ‖Ã‖ 6 (1 + ε)‖A‖ for all ε > 0 and so ‖Ã‖ 6 ‖A‖.

6.2.12. Proposition. Let X and Y be Banach spaces and A ∈ L(X,Y ). If
the range of A has a finite codimension in Y , then it is closed.

PROOF. Since A(X) = Ã(X̃), where X̃ = X/KerA and Ã : X̃ → Y is
the operator generated by A, we can assume that the operator A is injective. By
assumption there exists a finite-dimensional linear subspace Y0 in Y such that Y
is the algebraic direct sum of Y0 and A(X). Let X ⊕ Y0 denote the Banach direct
sum of X and Y0 (we recall that finite-dimensional normed spaces are complete).
The operator B : X ⊕ Y0 → Y , (x, y) 7→ Ax + y is continuous. This operator
is injective, since we deal with the injective operator A. In addition, the operator
B is surjective, since Y is the algebraic sum of A(X) and Y0. By the Banach
theorem the operator B has a continuous inverse. Hence B takes closed sets to
closed sets. In particular, the closed subspace X of the space X ⊕ Y0 (i.e., the
set of pairs (x, 0), x ∈ X) is taken to the closed set A(X), which completes the
proof. �

6.3. The Hahn–Banach Theorem

In this section we prove the most important result in linear analysis: the Hahn–
Banach theorem. This result has numerous applications in mathematics as well as
in applications, in particular, in economics. Unlike most of other assertions in this
book, the Hahn–Banach theorem is nontrivial also in the finite-dimensional case.
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6.3.1. Definition. Let X be a linear space. A function p : X → [0,+∞) is
called a seminorm on X if for all scalars α and all vectors x, y we have

p(αx) = |α|p(x) and p(x+ y) 6 p(x) + p(y).

6.3.2. Definition. A function p : X → (−∞,+∞), where X is a real linear
space, is called convex if

p
(
tx+ (1 − t)y

)
6 tp(x) + (1 − t)p(y) ∀x, y ∈ X, ∀ t ∈ [0, 1].

A function p : X → (−∞,+∞) is called positively homogeneous convex if

p(αx) = αp(x) and p(x+ y) 6 p(x) + p(y) ∀α > 0,∀x, y ∈ X.

It is clear that all seminorms and all linear functions are positively homoge-
neous convex. It follows from the definition that a positively homogeneous convex
function p is convex:

p(tx+ (1 − t)y) 6 p(tx) + p
(
(1 − t)y

)
= tp(x) + (1 − t)p(y)

whenever t ∈ [0, 1]. If also p(−x) = p(x), then p is a seminorm.

6.3.3. Theorem. (THE HAHN–BANACH THEOREM) Let X be a real linear
space, p a convex function on X , X0 a linear subspace in X , and l0 a linear
function on X0 satisfying the condition

l0(x) 6 p(x) for all x ∈ X0.

Then l0 can be extended to a linear function l on all of X satisfying the condition
l(x) 6 p(x) for all x ∈ X .

PROOF. Note that this theorem is not trivial even in the two-dimensional case.
As we shall now see, the main problem consists in extending the functional to a
larger space in which X0 is a hyperplane. Suppose first that X is the linear span
of X0 and a vector z not belonging to X0. Every vector x in X has the form
x = x0 + tz. Every linear extension is uniquely determined by our choice of the
number c = l(z). Then l(x) = l0(x0) + tc. We have to pick c in such a way that
l 6 p. Thus, we have to ensure the inequality

l0(x0) + tc 6 p(x0 + tz). (6.3.1)

For t > 0 this inequality is equivalent to the inequality

c 6 t−1p(x0 + tz) − l0(t−1x0).

Similarly, for t = −s < 0 inequality (6.3.1) is equivalent to the estimate

c > −s−1p(x0 − sz) + l0(s−1x0).

We show that there exists a number c satisfying both inequalities for all x0 and t.
To this end we prove the inequality

c′ := sup
y∈X0, s>0

[
−s−1p(sy − sz) + l0(y)

]
6 c′′ := inf

y∈X0, t>0

[
t−1p(ty + tz) − l0(y)

]
. (6.3.2)
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For c we then take any number between c′ and c′′. Inequality (6.3.2) is equivalent
to the estimate

−s−1p(sy′ − sz) + l0(y′) 6 t−1p(ty′′ + tz) − l0(y′′) ∀ y′, y′′ ∈ X0, s, t > 0,

which can be written as

l0(y′′) + l0(y′) 6 t−1p(ty′′ + tz) + s−1p(sy′ − sz).

Multiplying by the number λ = ts/(t+ s), for which λt−1 + λs−1 = 1, we write
the latter as

l0(λy′′ + λy′) 6 λt−1p(ty′′ + tz) + λs−1p(sy′ − sz).

This estimate is true, since

l0(λy′′ + λy′) = l0
(
(λt−1(ty′′ + tz) + s−1(sy′ − sz)

)
6 p

(
(λt−1(ty′′ + tz) + s−1(sy′− sz)

)
6 λt−1p(ty′′ + tz) +λs−1p(sy′− sz).

Thus, in the considered case the theorem is proved. In the general case an
extension is constructed step-by-step by adding an independent vector, which is
done with the aid of Zorn’s lemma. Let M denote the collection of all possible
extensions of l0 to larger subspaces satisfying the condition of domination by p.
Every such extension l′ has a linear domain of definition L′, on which l′ 6 p, and
l′|X0 = l0. We declare an extension l′ subordinated to an extension l′′ if for the
corresponding domains of definition we have L′ ⊂ L′′ and l′′|L′ = l′. It is clear
that we obtain a partial order. The chain condition is fulfilled: if we are given
a chain of extensions lα with domains Lα, then a majorant l ∈ M for it can be
constructed as follows. The union L of all Lα is a linear space, since for every
x, y ∈ L there exist Lα and Lβ with x ∈ Lα and y ∈ Lβ , but by the definition of
a chain either Lα ⊂ Lβ or Lβ ⊂ Lα, i.e., in any case x + y ∈ L. It is clear that
tx ∈ L for all scalars t. By the same reasoning the function l(x) = lα(xα) for
x = xα ∈ Lα is well-defined on L, i.e., lα(xα) = lβ(xβ) if xα = xβ . Moreover,
l 6 p on L. Thus, l ∈ M is a majorant for all lα. By Zorn’s lemma M contains
a maximal element l. According to the first step, the domain of definition of l
coincides with the whole space X: otherwise l could be linearly extended to a
larger subspace with subordination to p contrary to the maximality of l. �

With the aid of a Hamel basis (see Proposition 1.1.1) it is easy to find a linear
extension of l, but it is not always subordinated to p.

Usually various versions of the Hahn–Banach theorem are established for
seminorms or positively homogeneous functions p (which is sufficient for most of
applications), but the case of convex functions was also considered in the litera-
ture, see Altman [665], Bittner [672], it can be found in books, see, e.g., Barbu,
Precupanu [47]. Mazur and Orlicz [697] initiated a study of more general exten-
sion problems for linear functionals and linear operators with several restrictions,
there is an extensive literature on this direction.

6.3.4. Corollary. Let X be a real or complex linear space, p a seminorm on
the space X , X0 a linear subspace in X , and let l0 be a linear function on X0
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satisfying the following condition:

|l0(x)| 6 p(x) ∀x ∈ X0.

Then l0 can be extended to a linear function l on all of X satisfying the condition
|l(x)| 6 p(x) for all x ∈ X .

PROOF. In the real case this assertion follows directly from the Hahn–Banach
theorem. In the complex case, let XIR denote the realification of X , i.e., X over
the field IR. Let us apply the Hahn–Banach theorem to the function Re l0 on the
realification X0,IR of the space X0. It is clear that |Re l0| 6 p on X0,IR. We obtain
a real linear function l1 on XIR with l1|X0,IR = Re l0 and l1 6 p. We observe that
|l1| 6 p. We now set

l(x) = l1(x) − il1(ix), x ∈ X,
which is possible, since ix ∈ X and X coincides with XIR as a set. For all x ∈ X0

we have

l1(x) − il1(ix) = Re l0(x) − iRe l0(ix) = Re l0(x) + iIm l0(x) = l0(x).

Finally, for every x ∈ X there exists a real number θ such that l(x) = eiθ|l(x)|.
Set y = e−iθx. Then l(y) = |l(x)|, i.e., l(y) = l1(y) and l1(iy) = 0, since
l1(iy), l(y) ∈ IR. Hence |l(x)| = l(y) = l1(y) 6 p(y) = p(x). �

6.3.5. Corollary. Let X0 be a linear subspace of a normed space X (not
necessarily closed) and let l0 be a continuous linear function on X0. Then l0 can
be extended to a continuous linear function on all of X with the same norm as the
functional l0 on X0.

PROOF. By assumption |l0(x)| 6 ‖l0‖‖x‖ if x ∈ X0. Set p(x) = ‖l0‖‖x‖.
Applying the previous corollary, we extend l0 to a linear function l on X with the
bound |l| 6 p. This gives ‖l‖ 6 ‖l0‖. Since ‖l0‖ 6 ‖l‖, one has ‖l‖ = ‖l0‖. �

Let us give a geometric form of the Hahn–Banach theorem connected with
separation of convex sets.

Let X be a real linear space. We shall say that a linear function l separates
two sets A,B ⊂ X if

inf
x∈A

l(x) > sup
x∈B

l(x).

In other words, there exists a number c such that

B ⊂ {x : l(x) 6 c} and A ⊂ {x : l(x) > c}.
Geometrically this means that A and B are on different sides from the affine
subspace l−1(c).

If l 6= 0, then the set {x : l(x) 6 c} is called a halfspace and the set
{x : l(x) = c} is called a hyperplane.

The algebraic kernel of a set A in a linear space X is defined as the set of
all points x ∈ A such that for every v ∈ X there exists a number ε = ε(v) > 0
for which x+ tv ∈ A whenever |t| < ε. If X is a normed space, then every inner
point of A belongs to the algebraic kernel, but the algebraic kernel can be larger
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than the interior. For example, if we take for X the space of polynomials on [0, 1]
with the norm from C[0, 1], then the set of polynomials x with maxt |x′(t)| < 1
has no interior, but coincides with its algebraic kernel. For an arbitrary infinite-
dimensional normed space X , the set l−1{(−1, 1)}, where l is a discontinuous
linear function, also has no inner points, but coincides with its algebraic kernel.

Let V be a convex set in a linear space X . Suppose that the algebraic kernel
of V contains the point 0.

The Minkowski functional of the set V is the function

pV (x) := inf{t > 0: t−1x ∈ V }.

The condition that 0 belongs to the algebraic kernel of V is needed to guarantee
that the functional pV be with finite values.

6.3.6. Theorem. Under the stated assumptions, the functional pV is positively
homogeneous convex and nonnegative. If the set V is balanced (i.e., θV ⊂ V
whenever |θ| 6 1), then pV is a seminorm.

Conversely, for every positively homogeneous convex nonnegative function p
the set U := {x : p(x) 6 1} is convex, its algebraic kernel is the set {x : p(x)<1},
and p = pU .

PROOF. As we have already noted, 0 6 pV (x) < ∞. For every α > 0 and
every x ∈ X we have

pV (αx) = inf{t > 0: t−1αx ∈ V } = α inf{s > 0: s−1x ∈ V } = αpV (x).

Let x, y ∈ X . Let us fix ε > 0 and choose s, t > 0 such that

pV (x) < s < pV (x) + ε, pV (y) < t < pV (y) + ε.

Then x/s ∈ V , y/t ∈ V . Set r = s + t. The point (x + y)/r = s
rx/s + t

ry/t
belongs to the interval with the endpoints x/s and y/t, hence by the convexity of
the set V belongs to V . Thus, pV

(
(x+ y)/r

)
6 1, whence

p(x+ y) 6 r < pV (x) + pV (y) + 2ε.

Since ε was arbitrary, we obtain pV (x + y) 6 pV (x) + pV (y). Finally, if V is
balanced, then pV (θx) = pV (x) whenever |θ| = 1.

Let p > 0 be a positively homogeneous convex function. By the convexity of
p the set U = {x : p(x) 6 1} is convex. Every element x ∈ X with p(x) < 1
belongs to the algebraic kernel U , because

p(x+ ty) 6 1 whenever |t| < (1 − p(x))/max(p(y), 1).

If p(x) > 1, then x does not belong to the algebraic kernel of U , since

p(x+ εx) = (1 + ε)p(x) > 1 + ε > 1

for all ε > 0. It is clear from the definition that pU = p. �

6.3.7. Theorem. Let U and V be convex sets in a real linear space X such
that the algebraic kernel of U is not empty and does not intersect V . Then there
exists a nonzero linear function separating U and V .
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PROOF. We can assume that 0 belongs to the algebraic kernel of U (otherwise
we can pass to the sets U − a and V − a for some point a in the algebraic kernel
of U ). Let us take a point v0 ∈ V and set W = U − V + v0. It is straightforward
to verify that W is a convex set and its algebraic kernel W 0 contains 0. It is
easy to derive from the definition that λu ∈ U0 and λw ∈ W 0 for all u ∈ U0,
w ∈ W 0, |λ| < 1. Finally, we observe that v0 6∈ W 0. Otherwise the algebraic
kernel of U − V contains 0. Then there exists a nonzero element x ∈ U ∩ V
and tx ∈ U − V for some t ∈ (0, 1), i.e., tx = u − v, u ∈ U , v ∈ V and
(t+ 1)−1u = t(t+ 1)−1x+ (t+ 1)−1v ∈ U0 ∩ V , which is impossible. Let p be
the Minkowski functional of the setW 0. Then p(v0) > 1. On the one-dimensional
subspace of vectors of the form tv0 we define a linear function l0(tv0) = tp(v0).
By the Hahn–Banach theorem l0 extends to a linear function l on X such that
l 6 p. Then l(w) 6 1 if w ∈ W 0, whence l(w) 6 1 for all w ∈ W , because
λw ∈ W 0 if λ ∈ (0, 1). Since l(v0) = l0(v0) = p(v0) > 1, the functional l
separates the setW and v0. Hence l separates U −V and {0}, but then l separates
the sets U and V . �

Note that in the previous theorem no topology was used: the algebraic kernel
is defined in purely algebraic terms. Applying to normed spaces, we obtain the
following assertion (see also Example 8.3.11).

6.3.8. Corollary. Suppose that two convex sets U and V in a real normed
space X are disjoint and U is open. Then there exists a nonzero continuous linear
function separating U and V .

PROOF. We observe that the algebraic kernel of U coincides with U by the
assumption that U is open. Hence there exists a nonzero linear function l sep-
arating U and V . This function is automatically continuous in case of an open
set U . This follows from an obvious observation: if a linear function l is bounded
from above or below on a nonempty open set, then it is continuous. Indeed, the
function l is bounded from above or below on some ball of radius r > 0. Hence
it is bounded from above or below on the ball of radius r centered at the origin,
which gives the boundedness in absolute value on this ball. �

6.3.9. Corollary. If V is a closed convex set in a real normed space X
and x 6∈ V , then there exists l ∈ X∗ with l(x) > supv∈V l(v). If V is a linear
subspace, then one can take l such that l(x) = 1 and l|V = 0.

PROOF. We can assume that x = 0. There is an open ball U centered at the
origin such that U ∩ V = ∅. By the previous theorem there exists a nonzero
functional l ∈ X∗ with infu∈U l(u) > supv∈V l(v). Then infu∈U l(u) < l(0) = 0,
since otherwise l = 0. If V is linear, then l|V = 0 (otherwise the supremum is
infinite). �

6.4. Applications of the Hahn–Banach Theorem

Some interesting applications of the Hahn–Banach theorem have already been
discussed above: the separation theorem. Another important application is the
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proof of the fact (not a priori obvious) that the topological dual to the infinite-
dimensional normed space is nonzero.

6.4.1. Theorem. For every nonzero element x of a normed space X there
exists a functional l such that ‖l‖ = 1 and l(x) = ‖x‖.

PROOF. On the one-dimensional space generated by x we set l0(tx) = t‖x‖.
Then l0(x) = ‖x‖ and ‖l0‖ = 1. It remains to extend l0 to X with the preservation
of its norm. �

With the aid of a similar reasoning it is easy to establish that in the case of an
infinite-dimensional space X for every n there exist vectors x1, . . . , xn ∈X and
functionals l1, . . . , ln∈X∗ such that li(xj) = δij . In particular, the dual space is
also infinite-dimensional.

6.4.2. Corollary. Let X0 be a finite-dimensional subspace of a normed
space X . Then X0 is topologically complemented in X , i.e., there exists a closed
linear subspace X1 such that X is the direct algebraic sum of X0 and X1 and the
natural algebraic projections P0 and P1 to X0 and X1 are continuous.

PROOF. As noted above, one can find a basis x1, . . . , xn in the space X0 and
elements li ∈ X∗ with li(xj) = δij . Set

X1 :=
n⋂
i=1

Ker li, P0x :=
n∑
i=1

li(x)xi, P1x := x− P0x.

For every j we have P0xj = lj(xj)xj = xj . Note that P0|X1 = 0, X0∩X1 = {0}.
In addition, we have X = X0 ⊕ X1, because x − P0x ∈ X1 by the equalities
lj(x − P0x) = lj(x) − lj(x)lj(xj) = 0. The continuity of P0 and P1 is obvious
from their definitions. It is also clear that P0 and P1 coincide with the algebraic
projections to X0 and X1. �

We now construct an isometric embedding of any normed space X into its
second dual X∗∗. For every x ∈ X , we consider the functional Jx : f 7→ f(x) on
the space X∗.

6.4.3. Proposition. The mapping J : x 7→ Jx is a linear isometric embedding
of X into X∗∗.

PROOF. The linearity of J is obvious. Since

|Jx(f)| = |f(x)| 6 ‖x‖ whenever ‖f‖ 6 1,

we have ‖Jx‖ 6 ‖x‖. On the other hand, as shown above, if x 6= 0, there exists
f ∈ X∗ with ‖f‖ = 1 and f(x) = ‖x‖, i.e., Jx(f) = ‖x‖, whence we obtain that
‖Jx‖ > ‖x‖. �

If J(X) = X∗∗, then the spaceX is called reflexive. Below we give examples
of reflexive and nonreflexive spaces. One should bear in mind that the reflexivity
of a space X is not equivalent to the existence of an isometry between X and X∗∗

(Exercise 6.10.180 contains a counter-example: the famous James space); it is
required that the canonical mapping J be an isometry onto all of X∗∗.
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Combining this proposition with the Banach–Steinhaus theorem, we obtain an
important assertion about the boundedness of weakly bounded sets.

6.4.4. Definition. A set A in a normed space is called weakly bounded if

sup
x∈A

|l(x)| <∞

for every continuous linear functional l.

In the real case it suffices to have such an estimate without absolute value,
since −l is a continuous functional as well.

6.4.5. Theorem. A set in a normed space is weakly bounded precisely when
it is bounded in norm.

PROOF. The weak boundedness of the set A means that the family of func-
tionals Jx, where x ∈ A, is bounded on every element of X∗. Since X∗ is
Banach, this family is bounded in the norm of X∗∗ by the Banach–Steinhaus theo-
rem. According to the proposition above the set A is norm bounded. The converse
assertion is obvious. �

Yet another useful corollary of the existence of an isometric embedding of X
into X∗∗ is the following result.

6.4.6. Proposition. Every normed space X possesses a unique (up to a linear
isometry) completion that is a Banach space.

PROOF. For such a completion we can take the closure of the image of X
under the embedding into X∗∗. It should be noted that using the completion
constructed earlier in the category of general metric spaces, one can obtain a space
that is not linear. The uniqueness of a completion up to a linear isometry is easily
verified. �

In the case of a separable normed space, by using the Hahn–Banach theorem
it is easy to obtain a countable set of functionals separating points.

6.4.7. Proposition. Let X be a separable normed space. Then there exists a
countable set of functionals ln ∈ X∗ such that the equality ln(x) = 0 for all n
implies the equality x = 0.

PROOF. Let {xn} be a countable everywhere dense set in X . Assuming that
X 6= 0, for every n we find ln ∈ X∗ with ln(xn) = ‖xn‖ and ‖ln‖ = 1. Let
ln(x) = 0 for all n. Let us fix ε > 0 and find xm with ‖x − xm‖ 6 ε. Then
‖xm‖ = lm(xm) = lm(xm − x) 6 ‖xm − x‖ 6 ε, whence ‖x‖ 6 2ε. Hence we
have x = 0. �

The existence of functionals separating points will be used in the theorem on
universality of the space C(K) proved in §6.7.

By using the Hahn–Banach theorem we constructed functionals having max-
ima on the unit ball. On the other hand, we have encountered examples of func-
tionals that do not attain maxima. In this connection we mention the following
result due to Bishop and Phelps (its proof can be found, for example, in Diestel
[147, Chapter 1]; a stronger assertion can be found in Bollobás [77, Chapter 8]).
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6.4.8. Theorem. Let C be a nonempty closed bounded convex set in a real
Banach space X . Then the set of functionals in X∗ attaining their maximum on C
is everywhere dense in X∗.

In particular, this assertion is true for closed balls. Not all functionals attain
their maxima on balls: this is true only in reflexive spaces (see Theorem 6.10.10).

Note that for every normed space X with the completion X , the duals X∗

and X
∗
coincide in the sense that every functional from X∗ extends uniquely by

continuity to a functional from X
∗
, moreover, every element of X

∗
is obtained

in this way from its restriction to X . If Banach spaces X and Y are linearly
homeomorphic by means of an operator J , then the mapping l 7→ l◦J is a home-
omorphism from Y ∗ onto X∗. However, one should bear in mind that there ex-
ist non-isomorphic (linearly topologically) Banach spaces X and Y with linearly
homeomorphic duals. As an example one can take l1 and L1[0, 1]. The absence of
linear isomorphisms between them is the subject of Exercise 6.10.104 and the fact
that their duals l∞ and L∞[0, 1] are isomorphic is Pe lczyński’s theorem, a proof
of which can be read in Albiac, Kalton [9, Theorem 4.3.10].

Let us give less obvious examples of positively homogeneous convex func-
tions that are useful for constructing some interesting linear functions.

6.4.9. Example. The following functions p are positively homogeneous con-
vex:

(i) let X be the space of all bounded real sequences x = (xn) and let

p(x) = inf S(x, a1, . . . , an), S(x, a1, . . . , an) := sup
k>1

1
n

n∑
i=1

xk+ai
,

where inf is taken over all natural numbers n and all finite collections of numbers
a1, . . . , an ∈ IN;

(ii) let X be the space of all bounded real functions on the real line and let

p(f) = inf S(f, a1, . . . , an), S(f, a1, . . . , an) := sup
t∈IR

1
n

n∑
i=1

f(t+ ai),

where inf is taken over all natural numbers n and all finite collections of numbers
a1, . . . , an ∈ IR;

(iii) let X be the space of all bounded real sequences x = (xn) and let

p(x) = inf S(x, a1, . . . , an), S(x, a1, . . . , an) := lim sup
k→∞

1
n

n∑
i=1

xk+ai
,

where inf is taken over all natural numbers n and all finite collections of numbers
a1, . . . , an ∈ IN.

PROOF. Assertion (i) follows from (ii), so we prove the latter. It is clear that
|p(f)| < ∞ and p(αf) = αp(f) if α > 0. Let f, g ∈ X and ε > 0. Find
a1, . . . , an, b1, . . . , bm such that

sup
t∈IR

1
n

n∑
i=1

f(t+ ai) < p(f) + ε, sup
t∈IR

1
m

m∑
i=1

g(t+ bi) < p(g) + ε.
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We observe that the quantity sup
t∈IR

(mn)−1
∑m
j=1

∑n
i=1(f + g)(t + ai + bj) does

not exceed the sum

sup
t∈IR

1
m

m∑
j=1

1
n

n∑
i=1

f(t+ ai + bj) + sup
t∈IR

1
n

n∑
i=1

1
m

m∑
j=1

g(t+ ai + bj).

We have n−1
∑n
i=1 f(t + ai + bj) 6 S(f, a1, . . . , an) for any fixed t and bj ,

whence

sup
t∈IR

1
m

m∑
j=1

1
n

n∑
i=1

f(t+ ai + bj) 6 S(f, a1, . . . , an).

From a similar estimate for g we obtain

p(f + g) 6 S(f, a1, . . . , an) + S(g, b1, . . . , bm) < p(f) + p(g) + 2ε,

which gives p(f+g) 6 p(f)+p(g) because ε was arbitrary. The proof of assertion
(iii) is completely similar. �

We now apply the established facts for constructing some curious set func-
tions.

6.4.10. Example. On the σ-algebra of all subsets of IN there exists a nonneg-
ative additive function ν that equals zero on all finite sets and equals 1 on IN; in
particular, the function ν is not countably additive.

PROOF. In the space X of bounded sequences with the function p from
assertion (iii) in the previous example we take the subspace X0 of sequences
having a limit. Set l(x) = lim

n→∞
xn if x ∈ X0. Then l(x) = p(x), since

lim sup
k→∞

n−1
∑n
i=1 xk+ai

= lim
k→∞

xk for all fixed n and a1, . . . , an. Let us ex-

tend l to a linear function l̂ on X with l̂ 6 p. If x ∈ X and xn 6 0 for
all n, then p(x) 6 0 and hence l̂(x) 6 0. Hence l̂(x) > 0 if xn > 0. If
x = (x1, . . . , xn, 0, 0, . . .), then l̂(x) = l(x) = 0. Finally, l̂(1, 1, . . .) = 1. For
every E ⊂ IN set ν(E) := l̂(IE), where IE is the indicator function of E, i.e.,
the sequence on the nth position of which one has 1 or 0 depending on whether n
belongs to E or not. To finite sets there correspond finite sequences, so ν vanishes
on them. On all of IN the value of ν is 1, and the additivity of ν follows from the
additivity of l̂ and the equality IE1∪E2 = IE1 + IE2 for disjoint E1 and E2. The
failure of the countable additivity is obvious. �

6.4.11. Example. On the space X of all bounded real functions with bounded
support on the real line there exists a linear function L that coincides with the
Lebesgue integral on all Lebesgue integrable functions and has the following prop-
erties: L(f) > 0 if f > 0, |L(f)| 6 supt |f(t)|, L

(
f(·+h)

)
= L(f) for all f ∈ X

and h ∈ IR1, where f(· + h)(t) = f(t+ h).

PROOF. First we construct such functional on the space X1 of bounded
functions with period 1. Let us consider on X1 the function p from Exam-
ple 6.4.9(ii). On the subspace X0 of functions integrable over the period we
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define L as the Lebesgue integral and observe that L(f) 6 p(f) if f ∈ X0 by
Exercise 3.12.26. Let us extend L to X by the Hahn–Banach theorem. We have
L(−f) = −L(f) 6 p(−f), whence

−p(−f) 6 L(f) 6 p(f) ∀ f ∈ X1.

If f > 0, then p(−f) 6 0 by the definition of p and hence L(f) > 0. It is clear that
|L(f)| 6 supt |f(t)|, since p(f) 6 supt |f(t)|. We show that L(f) = L

(
f(·+h)

)
for all f ∈ X1, h ∈ IR1. Let us set g(t) = f(t+h)−f(t) and verify that L(g) = 0.
Let ak = (k − 1)h if k = 1, . . . , n. Then

∑n
i=1 g(t + ai) = f(t + nh) − f(t),

whence

p(g) 6 S(g, a1, . . . , an) = sup
t
n−1[f(t+ nh) − f(t)] → 0 as n→∞.

Thus, p(g) 6 0. Similarly p(−g) 6 0, whence L(g) = 0. Now for a bounded
function f with support in [−n, n) we set L(f) :=

∑n−1
j=−n L(fj), where fj is

the 1-periodic extension of the restriction of the function f to [j, j + 1). It is not
difficult to verify that we have obtained the desired functional. �

Both examples are due to Banach.
Letting ζ(A) := L(IA) for a bounded set A, we obtain an additive nonnega-

tive set function extending Lebesgue measure to bounded sets and invariant with
respect to translations. By the way, if we take for X0 the one-dimensional space of
constants, then the same reasoning gives yet another linear functional on X1 equal
to 1 at 1, nonnegative on nonnegative functions and invariant with respect to shifts
of the argument of functions. By a similar reasoning, on every set T on which
there is an action of a commutative group of bijections G, one can construct a
nonnegative additive function ζ with ζ(T ) = 1 invariant with respect to G. In this
way Banach constructed an additive area on the class of all bounded sets that co-
incides with Lebesgue measure on measurable sets and is invariant with respect to
isometries. However, for IR3 such an extension does not exist, which was proved
by Hausdorff. Hence the commutativity of the group G is important.

Here is one more example of application of the Hahn–Banach theorem.

6.4.12. Example. Let X,Y be normed spaces, let D ⊂ X be a linear sub-
space, T : D → Y a linear mapping (not necessarily continuous), and let l be a
linear function on D such that |l(x)| 6 ‖Tx‖

Y
for all x ∈ D. Then there exists a

functional f ∈ Y ∗ for which l(x) = f(Tx) for all x ∈ D.

PROOF. If KerT = 0, then l0(y) = l(T−1y) is a linear functional on T (D)
and |l0(y)| 6 ‖y‖

Y
. Let us extend l0 to a functional f ∈ Y ∗. Then l(x) = f(Tx)

for all x ∈ D. If KerT 6= 0, then we take a linear subspace D1 in D such that
D = KerT⊕D1. As we have proved, there exists f ∈ Y ∗ for which l(x) = f(Tx)
for all x ∈ D1. This is also true for x ∈ KerT , since |l(x)| 6 ‖Tx‖

Y
. Hence this

is true for all x ∈ D. �

This result will be used below in Exercise 6.5.3 for representing linear func-
tionals by means of inner products.
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6.5. Duals to Concrete Spaces

Here we describe the dual spaces to the most important Banach spaces. We
start with the Riesz theorem on a general form of a continuous linear functional
on a Hilbert space.

6.5.1. Theorem. (THE RIESZ THEOREM) Let H be a real or complex Hilbert
space. Then for every v ∈ H the formula

lv(x) = (x, v)
defines a continuous linear functional on H and ‖lv‖ = ‖v‖.
Conversely, every functional l ∈ H∗ is represented in this way, and the mapping
v 7→ lv is an isometry that is linear in the real case and conjugate-linear in the
complex case.

PROOF. The equality ‖lv‖ = ‖v‖ is obvious from the Cauchy inequality
|(x, v)| 6 ‖x‖‖v‖ and the equality lv(v) = ‖v‖2. Let l ∈ H∗. If l = 0, then
v = 0. We shall assume that H0 := l−1(0) 6= H . Let us take a unit vector e ⊥ H0

and set v := l(e)e. Then for all x ∈ H we have l(x) = (x, v), since this true for
all x ∈ H0 and for x = v by the equalities l(v) = |l(e)|2, (v, v) = |l(e)|2. The
last assertion of the theorem is obvious. �

In the complex case the Riesz identification of H with H∗ is conjugate-linear,
but not linear. However, there is also a linear isometry betweenH andH∗. Indeed,
by using an orthonormal basis {eα} in H we can define the conjugation v 7→ v by
sending

∑
α cαeα to

∑
α cαeα. Then v 7→ lv is the desired linear isometry.

It follows from the Riesz theorem that every continuous linear functional F
on H∗ has the form F (l) = l(a), where a ∈ H . Indeed, the function v 7→ F (lv)
is linear and continuous. Hence F (lv) = (v, a) for some a ∈ H , i.e., we have
F (lv) = (a, v) = lv(a). Therefore, H is reflexive.

6.5.2. Remark. For every real Euclidean space E (not necessarily complete)
the linear mapping J : E → E∗, v 7→ lv , where lv(x) = (x, v), preserves the
distances. Since E∗ is always complete, this mapping gives a completion of E
in the category of Euclidean spaces. For this it suffices to observe that on the
closure of J(E) in E∗ we have not only the norm, but also the inner product:
if f = lim

n→∞
J(vn) and g = lim

n→∞
J(wn), then the limit (f, g) := lim

n→∞
(wn, vn)

exists, does not depend on the choice of convergent sequences, is linear in each
argument (since we have J(λvn) = λJ(vn) and (λwn, vn) = λ(wn, vn)). We
can also set (f, g) := [‖f + g‖2 − ‖f‖2 − ‖g‖2]/2 and use vn and wn to make
sure that we have obtained an inner product. Thus, the closure J(E) of J(E) is
a Hilbert space. Indeed, J(E) = E∗, since after identification of E with J(E)
and J(E)

∗
with J(E) we obtain E∗ = J(E)

∗
= J(E). In a similar way one can

construct completions of complex Euclidean spaces.

6.5.3. Example. LetD be a linear subspace in a Hilbert spaceH , T : D → H
a linear mapping, l a linear function on D such that |l(x)| 6 ‖Tx‖ for all x ∈ D.
Then there exists v ∈ H for which l(x) = (Tx, v) for all x ∈ D. This follows
from Example 6.4.12.
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Let us apply the Riesz theorem to prove the Radon–Nikodym theorem.

6.5.4. Example. Let µ > 0 and ν > 0 be finite measures on a space (X,A)
and ν � µ. Let us consider the measure λ = µ + ν. Every function ϕ from
L1(λ) belongs to L1(µ) and its integral against the measure µ does not change if
we redefine ϕ on a set of λ-measure zero. Therefore, the linear function

L(ϕ) =
∫
X

ϕdµ

is well-defined on the real space L2(λ) (does not depend on the choice of a
representative of ϕ). By the Cauchy–Bunyakovskii inequality

|L(ϕ)| 6
∫
X

|ϕ| dλ 6 ‖1‖L2(λ)‖ϕ‖L2(λ).

The Riesz theorem gives a function ψ ∈ L2(λ) such that∫
X

ϕdµ =
∫
X

ϕψ dλ (6.5.1)

for all ϕ ∈ L2(λ). We shall deal with its A-measurable version. Substituting
ϕ = IA, where A ∈ A, we find that µ = ψ · λ, ν = (1 − ψ) · λ. Let us prove
that the function (1 − ψ)/ψ can be taken for dν/dµ. Let Ω = {x : ψ(x) 6 0},
Ω1 = {x : ψ(x) > 1}. Then Ω,Ω1 ∈ A. Substituting in (6.5.1) the functions
ϕ = IΩ and ϕ = IΩ1 , we obtain

µ(Ω) =
∫

Ω

ψ dλ 6 0, µ(Ω1) =
∫

Ω1

ψ dλ > λ(Ω1)

if µ(Ω1) > 0, whence µ(Ω) = 0 and µ(Ω1) = 0, since µ(Ω1) 6 λ(Ω1). Then the
function f defined by the equality

f(x) =
1 − ψ(x)
ψ(x)

if x 6∈ Ω ∪ Ω1, f(x) = 0 if x ∈ Ω ∪ Ω1

is nonnegative and A-measurable. The function f is integrable with respect to µ.
Indeed, the functions fn = fI{ψ>1/n} are bounded and increase pointwise to f ,
moreover,∫

X

fn dµ =
∫
X

I{ψ>1/n}(1 − ψ) dλ =
∫
X

I{ψ>1/n} dν 6 ν(X).

The Beppo Levi theorem yields convergence of {fn} to f in L1(µ). Finally, for
every A ∈ A we have IAI{ψ>1/n} → IA µ-a.e., hence also ν-a.e. (only here we
use the absolute continuity of ν with respect to µ). By convergence of {fn} to f
in L1(µ) and the equality I{ψ>1/n} · ν = I{ψ>1/n}(1−ψ) ·λ = I{ψ>1/n}f ·µ we
find that

ν(A) = lim
n→∞

∫
X

IAI{ψ>1/n} dν = lim
n→∞

∫
X

IAI{ψ>1/n}f dµ =
∫
A

f dµ.

Let us turn to another theorem due to F. Riesz about a general form of a
continuous linear functional on the space C[a, b].

6.5.5. Theorem. (THE RIESZ THEOREM FOR C) The general form of a
continuous linear function on the real or complex space C[a, b] with its sup-norm
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is given by the following integral formula:

l(x) =
∫

[a,b]

x(t)µ(dt),

where µ is a bounded Borel measure on [a, b] (complex in the complex case),
moreover, ‖l‖ = ‖µ‖.

PROOF. For simplification of formulas we consider the real case. By the
Hahn–Banach theorem every continuous linear functional l on C[a, b] extends
with the same norm to the space B[a, b] of all bounded functions on [a, b]. The
extension is also denoted by l. Set

F (s) := l(I[a,s)) if s ∈ (a, b], F (s) = 0 if s 6 a, F (s) = l(I[a,b]) if s > b.

We show that the function F is of bounded variation. Let a= t0< · · ·<tn, where
tn−1 6 b and tn > b. Set εi := sign

(
F (ti) − F (ti−1)

)
and [tn−1, tn) = [tn−1, b]

if tn > b. Then
n∑
i=1

|F (ti) − F (ti−1)| =
n∑
i=1

εi
(
F (ti) − F (ti−1)

)
= l

( n∑
i=1

εiI[ti−1,ti)

)
6 ‖l‖

∥∥∥ n∑
i=1

εiI[ti−1,ti)

∥∥∥ 6 ‖l‖,

since the function
∑n
i=1 εiI[ti−1,ti) can assume only the values −1, 1, 0. Thus,

we have V (F, IR) 6 ‖l‖. The function F has at most a countable set T of
discontinuity points (see §4.2), and these points are jumps. We redefine F at these
points in order to obtain a left continuous function F0. It is readily seen that
V (F0, IR) 6 V (F, IR).

Let now x be a function continuous on [a, b]. We fix ε > 0 and take δ > 0
with the following properties: |x(t) − x(s)| 6 ε whenever |t− s| 6 δ and∣∣∣∣∫ b

a

x(t) dF0(t) −
n∑
i=1

x(ti)
(
F0(ti) − F0(ti−1)

)∣∣∣∣ 6 ε

if points a = t0 < t1 < · · · < tn are such that |ti − ti−1| 6 δ, tn−1 6 b,
tn > b. We take such points outside T (at these points F0 and F are equal) and
take a step function ψ equal to x(ti−1) on [ti−1, ti), i = 1, . . . , n. Clearly, we
have ‖x − ψ‖ 6 ε. Hence we obtain |l(x) − l(ψ)| 6 ε‖l‖. Finally, we have
l(ψ) =

∑n
i=1 x(ti−1)

(
F0(ti) − F0(ti−1)

)
, whence∣∣∣∣∫ b

a

x(t) dF0(t) − l(x)
∣∣∣∣ 6 ε(1 + ‖l‖).

Since ε was arbitrary, l(x) is the Stieltjes integral of x against F0. This integral
equals the Lebesgue integral with respect to the Borel measure µ generated by F0

(see §4.2). It is readily seen that the Stieltjes integral of x against F0 is not greater
than V (F0, IR) supt |x(t)|, whence ‖l‖ 6 V (F0, IR), so ‖l‖ = V (F0, IR). The
equality ‖µ‖ = V (F0, IR) is proved in Proposition 4.2.9. �

Actually, as shown in §6.10(vii), the Riesz theorem remains in force for every
compact space, so it is possible to use more advanced techniques as compared to
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the crude construction presented above. The reader may ask the following ques-
tion: is not it possible to obtain the required measure µ at once as the action of the
extension of l on the indicator functions? It turns out that the answer is negative:
the obtained set function can fail to be countably additive (see Exercise 6.10.100).

6.5.6. Theorem. (i) The general form of a continuous linear function on c0
is given by the series

l(x) =
∞∑
n=1

ynxn, where y = (yn) ∈ l1 and ‖l‖ = ‖y‖l1 .

(ii) Let 1 < p <∞. The general form of a continuous linear function on lp is
given by the series

l(x) =
∞∑
n=1

ynxn, where y = (yn) ∈ lq, 1/p+ 1/q = 1 and ‖l‖ = ‖y‖lq .

(iii) The general form of a continuous linear function on l1 is given by the
series

l(x) =
∞∑
n=1

ynxn, where y = (yn) ∈ l∞ and ‖l‖ = ‖y‖l∞ .

PROOF. It is clear that every element y ∈ l1 defines a functional l on c0 by
this formula and ‖l‖ 6 ‖y‖l1 . Since for the vector

x = (sgn y1, . . . , sgn yn, 0, 0, . . .)

we have ‖x‖ = 1 and l(x) =
∑n
i=1 |yi|, we actually have ‖l‖ = ‖y‖l1 .

Conversely, let l be a continuous linear functional on c0. Set yn := l(en),
where en is the sequence with 1 at the nth position and 0 at all other positions.
Then

∑n
i=1 |yi| = l(x) 6 ‖l‖ for x = (sgn y1, . . . , sgn yn, 0, 0, . . .), whence

y ∈ l1. The vector y defines the functional l0 that coincides with l on finite linear
combinations of the vectors en. Since such combinations are dense in c0 and both
functionals are continuous, we obtain the equality l = l0. This proves assertion (i).
Assertions (ii) and (iii) are proved completely similarly, one only has to use the
inequality

∑∞
n=1 |xnyn| 6 ‖x‖lp‖y‖lq . �

Thus, c∗∗0 = l∞. This equality gives one of a rather few known examples
in which the second dual space is explicitly calculated for a non-reflexive space.
Of course, forming direct sums of c0 with reflexive spaces one can increase the
number of examples, but without using c0 one can hardly proceed. Note that the
dual (l∞)∗ is not isomorphic to l1, since is not separable (see Exercise 6.10.86).

We now consider the space Lp.

6.5.7. Theorem. Let µ be a nonnegative σ-finite measure on a measurable
space (Ω,A).

(i) Let 1 < p < ∞. The general form of a continuous linear function on the
real or complex space Lp(µ) is given by the formula

l(x) =
∫

Ω

x(t)y(t)µ(dt), where y ∈ Lq(µ), 1/p+ 1/q = 1.

Moreover, ‖l‖ = ‖y‖Lq(µ).



6.5. Duals to Concrete Spaces 211

(ii) The general form of a continuous linear function on the real or complex
space L1(µ) is given by the formula

l(x) =
∫

Ω

x(t)y(t)µ(dt), where y ∈ L∞(µ).

Moreover, ‖l‖ = ‖y‖L∞(µ).

PROOF. To simplify calculations we consider the real case. Hölder’s inequal-
ity shows that every function y ∈ Lq(µ) defines on Lp(µ) a linear functional the
norm of which does not exceed ‖y‖Lq(µ). If p > 1, we take for x the function
x(ω) = sgn y(ω)|y(ω)|q/p and on account of the equality q/p = q − 1 obtain

‖x‖pLp(µ) = ‖y‖qLq(µ) and
∫

Ω

x(ω)y(ω)µ(dω) = ‖y‖qLq(µ),

which shows that ‖l‖ = ‖y‖Lq(µ). In the case p = 1 we set c := ‖y‖L∞(µ). If
c = 0, then l = 0. Let c > 0. The sets En := {ω : c− 1/n 6 |y(ω)| 6 c} are of
positive measure. Take the functions xn := IEn

sgn y/µ(En) with norm 1. Then

l(xn) =
∫

Ω

xn(ω)y(ω)µ(dω) > c− 1/n

and hence ‖l‖ > c− 1/n, i.e., ‖l‖ > c. The opposite inequality is obvious.
Let l be a continuous linear functional on Lp(µ). Partitioning the space Ω into

parts of finite measure, it is easy to reduce the general case to the case of a finite
measure. Hence we further assume that µ(Ω) <∞. The function

ν(A) := l(IA), A ∈ A,

is a countably additive measure on A. If µ(A) = 0 for some set A ∈ A, then
ν(A) = 0, i.e., the measure ν is absolutely continuous with respect to the mea-
sure µ. By the Radon–Nikodym theorem there exists a µ-integrable function y
such that

l(IA) = ν(A) =
∫

Ω

IA(ω)y(ω)µ(dω), A ∈ A.

Hence for every simple function x the quantity l(x) equals the integral of xy.
Therefore, ∣∣∣∣∫

Ω

x(ω)y(ω)µ(dω)
∣∣∣∣ 6 ‖l‖‖x‖Lp(µ). (6.5.2)

By a limiting procedure we extend this estimate to all bounded µ-measurable func-
tions x. Let p > 1. We take for x the function x(ω) = sgn y(ω)|y(ω)|q/pI{|y|6n},
where n ∈ IN. This gives the estimate∫

Ω

|y(ω)|qI{|y|6n}(ω)µ(dω) 6 ‖l‖‖yI{|y|6n}‖
q/p
Lq(µ).

Thus, ‖yI{|y|6n}‖qLq(µ) 6‖l‖‖yI{|y|6n}‖
q/p
Lq(µ), hence by the equality q = 1 + q/p

we obtain the estimate ‖yI{|y|6n}‖Lq(µ) 6‖l‖. By Fatou’s theorem ‖y‖Lq(µ) 6‖l‖.
The function y defines on Lp(µ) a continuous linear functional l0 which coincides
with l on all simple functions. By the continuity of both functionals and density
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of the set of simple functions in Lp(µ) with p <∞ we obtain the equality l = l0.
Finally, in the case p = 1 from (6.5.2) we obtain the inequality∫

A

|y(ω)|µ(dω) 6 ‖l‖µ(A), A ∈ A.

Then µ
(
ω : |y(ω)| > ‖l‖

)
= 0, hence ‖y‖L∞(µ) 6 ‖l‖. �

Again, the dual L∞[0, 1]∗ is not isomorphic to L1[0, 1], since is not separable
(see Exercise 6.10.86).

Note that there are cases when it is not convenient to identify the dual to a
Hilbert space with the space itself, in spite of the existence of the natural iso-
morphism. For example, this is the case when one deals with duals to Sobolev
spaces (see Chapter 9). Here is yet another typical example. Let Ω be the open
unit disc in the complex plane and let A2(Ω) be the Bergman space of functions
holomorphic in Ω and belonging to L2(Ω) (see Example 5.2.2). For every λ ∈ Ω,
the linear functional ϕ 7→ ϕ(λ) is continuous on A2(Ω) (see estimate (5.2.1) in
the aforementioned example). This functional is not written in the form (ϕ,ψ),
although, of course, in accordance with the general theorem it can be represented
in this form with some element ψ ∈ A2(Ω). A similar situation arises for more
general functionals of the form

ϕ 7→
∫
K

ϕ(z)µ(dz),

where µ is a measure with compact support K in Ω.

6.6. The Weak and Weak-∗ Topologies

Let E be a linear space and let F be some linear space of linear functions
on E separating points in E in the following sense: for every x 6= 0, there exists
f ∈F with f(x) 6= 0. In other words, for every pair of different points x, y ∈ X ,
there exists an element f ∈ F with f(x) 6= f(y). In this situation, when there are
no norms or topologies, in many applications it is useful to introduce convergence
on E in the following way: xn → x if f(xn) → f(x) for every f ∈ F .

Similarly, on F it is useful to consider the pointwise convergence, i.e., con-
vergence fn(x) → f(x) for every x. We now introduce a natural topology in
which convergence of sequences has the indicated form. We warn the reader at
once that a topology with such a property is not unique. However, the topology
σ(E,F ) introduced below is natural in many respects. The objects defined and
studied in this section belong actually to the theory of locally convex spaces, fun-
damentals of which are discussed in Chapter 8. However, the special features of
weak topologies are so important that the violation of the deductive order of pre-
sentation undertaken here seems fully justified, moreover, it is even useful for the
subsequent acquaintance with more general concepts.

We first define the following basis of neighborhoods of zero:

Uf1,...,fn,ε :=
{
x ∈ E : |f1(x)| < ε, . . . , |fn(x)| < ε

}
,
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where n ∈ IN, fi ∈ F , ε > 0. Next we introduce a basis of neighborhoods of an
arbitrary point a ∈ E:

Uf1,...,fn,ε(a) : = Uf1,...,fn,ε + a

=
{
x ∈ E : |f1(x− a)| < ε, . . . , |fn(x− a)| < ε

}
.

Finally, we declare to be open the empty set and all possible unions of neighbor-
hoods Uf1,...,fn,ε(a), i.e., in these neighborhoods one can vary points a as well as
functionals fi along with numbers n and ε. This topology is the restriction of the
familiar topology of the pointwise convergence on IRF if points of E are regarded
as functions on F .

6.6.1. Proposition. The obtained class of sets is a Hausdorff topology, de-
noted by σ(E,F ) and called the weak topology generated by F . A sequence {xn}
converges in this topology to x precisely when f(xn) → f(x) for every f ∈ F .

PROOF. We could refer to Example 1.6.5, but we repeat the reasoning. The
indicated class contains E and the empty set and admits arbitrary unions. Let us
verify that it admits finite intersections. For this it suffices to show that the inter-
section V = Uf1,...,fn,ε(a) ∩ Ug1,...,gm,δ(b) belongs to σ(E,F ), i.e., every point
v ∈ V belongs to V along with a neighborhood of the form Uf1,...,fn,g1,...,gm,r(v).
To this end we pick r > 0 as follows:

r =
1
2

min
i,j

{
ε− |fi(v − a)|, δ − |gj(v − b)|

}
.

Then we obtain Uf1,...,fn,g1,...,gm,r(v) ⊂ V . Indeed, let x ∈ Uf1,...,fn,g1,...,gm,r(v).
We have

|fi(x− a)| = |fi(x− v) + fi(v − a)| < r + |fi(v − a)| < ε,

i.e., x ∈ Uf1,...,fn,ε(a). Similarly, x ∈ Ug1,...,gm,δ(b). The Hausdorff property of
this topology follows from the fact that F separates points of E: two points a 6= b
can be separated by a simple neighborhood of the form Uf,ε(a) and Uf,ε(b).

Suppose that a sequence {xn} converges in the topology σ(E,F ) to x. For
every f ∈ F and every ε > 0, there exists a number N such that xn ∈ Uf,ε(x)
whenever n > N . This means that f(xn) → f(x). Conversely, if, for every
functional f ∈ F , this is fulfilled, then every neighborhood Uf1,...,fn,ε(x) contains
all elements xn starting from some number. �

A similar assertion is true for nets.
The topology σ(E,F ) possesses the following remarkable property.

6.6.2. Theorem. The set of all linear functions on E continuous in the topol-
ogy σ(E,F ) coincides with F , i.e., one has the equality

(
E, σ(E,F )

)∗ = F .

PROOF. All functions from F are continuous on E by our construction of
the topology. Let us show that every linear function l on E continuous in the
topology σ(E,F ) is an element of F . By our assumption the set {x : |l(x)| < 1}
is open and contains the origin. Hence it contains some neighborhood of zero
Uf1,...,fn,ε. This means that l vanishes on the intersection of the kernels of the
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functionals fi. We show that l is a linear combination of fi. We use induction
on n. Let l = 0 on the set L1 = f−1

1 (0). If L1 = E, then l = f1 = 0. If there
is a vector v 6∈ L1, then l = l(v)f1(v)−1f1 by the linearity of the functionals l
and f1 and the fact that E is the sum of L1 and the linear span of v. Suppose that
our assertion is true for some n − 1 > 1. Let us consider l on the kernel Ln of
the functional fn. By the inductive assumption there exist numbers c1, . . . , cn−1

such that l(x) = c1f1(x) + · · · + cn−1fn−1(x) for all x ∈ Ln. If Ln = E, then
everything is proved. If there exists v 6∈ Ln, then l = c1f1 + · · · + cnfn, where
we set cn := fn(v)−1

(
l(v) − c1f1(v) − · · · − cn−1fn−1(v)

)
. �

Similarly we define the topology σ(F,E) on F . To this end the elements of
E must be considered as linear functionals on F , i.e., every x ∈ E generates the
functional f 7→ f(x). According to what we have proved above, convergence of
sequences in the topology σ(F,E) is the pointwise convergence. The space of
continuous linear functions on F with the topology σ(F,E) coincides with the
original space E in the following sense: every linear function l continuous in the
topology σ(F,E) has the form f 7→ f(x) for some x ∈ E.

Let us consider two important examples.

6.6.3. Example. Let X be a normed space.
(i) Letting E = X and F = X∗, we obtain the weak topology σ(X,X∗)

on X and the weak convergence. The dual to X with the topology σ(X,X∗)
remains X∗. However, in an infinite-dimensional space X the weak topology is
always strictly weaker than the norm topology. This is seen from the fact that every
basis neighborhood of zero {x ∈ X : |f1(x)| < ε, . . . , |fn(x)| < ε}, fi ∈ X∗,
contains a linear subspace

⋂n
i=1 f

−1
i (0), which is infinite-dimensional in the case

of any infinite-dimensional X . In particular, an open ball in X cannot contain
weakly open sets. It is interesting that in spite of the difference of the weak
topology and the norm topology, they can possess equal supplies of convergent
sequences. This is the case for X = l1 (Exercise 6.10.104).

(ii) Letting E = X∗ and taking X for F , we obtain the so-called weak-∗
topology σ(X∗, X) onX∗ and the weak-∗ convergence. The set of linear functions
continuous in the topology σ(X∗, X) is naturally identified with X , i.e., this set
in the general case is smaller than the space X∗∗, as, for example, is the case for
the space X = c0, where we have X∗∗ = l∞.

From the results of §6.4 we obtain the following assertion.

6.6.4. Proposition. Every weakly convergent sequence in a normed space X
is norm bounded.

If X is complete, any sequence in X∗ that converges in the weak-∗ topology
is norm bounded.

Of particular importance for applications is weak convergence in Hilbert
spaces. Since here the dual can be identified with the space itself, the weak
topology can be identified with the weak-∗ topology.

6.6.5. Example. Let H be a separable Hilbert space with an orthonormal
basis {en}. A sequence of vectors hk ∈ H converges weakly to a vector h
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precisely when it is norm bounded and for every n the sequence of numbers
(hk, en) converges to (h, en).

PROOF. Let supn ‖hn‖ < ∞ and (hk, en) → (h, en) for every n. It is clear
that (hk, x) → (h, x) for every x that is a finite linear combination of vectors en.
This gives convergence on every element x ∈ H , since for every ε > 0 there
exists a finite linear combination z of basis vectors with ‖x− z‖ 6 ε, whence we
have |(hk, x) − (hk, z)| 6 ε supn ‖hn‖. �

6.6.6. Example. A sequence of functions fn ∈ C[a, b] converges weakly
to a function f ∈ C[a, b] in and only if supn ‖fn‖ < ∞ and fn(t) → f(t)
for every point t ∈ [a, b]. The sufficiency of this condition is obvious from the
Lebesgue dominated convergence theorem and the fact that C[a, b]∗ is the space
of bounded Borel measures on [a, b]. The necessity is obvious from consideration
of functionals ϕ 7→ ϕ(t) and norm boundedness of weakly convergent sequences.

The weak topology in the infinite-dimensional case is not metrizable. This
has many different appearances.

6.6.7. Example. Let us consider the vectors un = ln(n + 1) en in l2, where
{en} is the standard basis in l2. The point 0 belongs to the closure of {un} in
the weak topology, but no subsequence in {un} can converge weakly, since it is
not norm bounded. In order to see that every weak neighborhood of zero contains
points from {un}, we observe that for every fixed finite collection of vectors
v1 = (v1,1, . . . , v1,j , . . .), . . . , vm = (vm,1, . . . , vm,j , . . .) in l2 and every ε > 0,
there exists a number n satisfying the condition

∑m
i=1 |vi,n|2 < ε| ln(n + 1)|−2,

which is obvious from divergence of the series of | ln(n+ 1)|−2. Then we obtain
the bound |(v1, un)| < ε,. . . ,|(vm, un)| < ε.

Let us note the following fact that is easily verified, but is unexpected at the
first glance.

6.6.8. Theorem. Let A be a linear mapping between normed spacesX and Y .
The following conditions are equivalent:

(i) the mapping A is continuous;
(ii) the mapping A is continuous with respect to the weak topologies, i.e., as

a mapping A :
(
X,σ(X,X∗)

)
→

(
Y, σ(Y, Y ∗)

)
;

(iii) if xn → 0 weakly, then {Axn} is weakly convergent.

PROOF. Let ‖A‖ < ∞. For a weak neighborhood of zero in Y of the form
V = {y ∈ Y : |gi(y)| < ε, g1, . . . , gn ∈ Y ∗} we take the following weak
neighborhood of zero: U = {x ∈ X : |fi(x)| < ε, i = 1, . . . , n} in X , where
fi := gi ◦A ∈ X∗. This gives the inclusion A(U) ⊂ V and shows the weak
continuity at zero, which obviously yields the continuity at all other points. It is
clear that (ii) implies (iii). Suppose now that (iii) is fulfilled. Then ‖A‖ < ∞ by
Corollary 6.1.3, since if ‖xn‖ → 0, then xn → 0 weakly, hence {Axn} converges
weakly by condition (iii), whence supn ‖Axn‖ <∞. �

It has already been noted that the weak topology is not metrizable if X is
infinite-dimensional. Hence for nonlinear mappings (even with values in the real
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line) the weak sequential continuity can be strictly weaker than the continuity in
the weak topology (see Exercise 6.10.167). However, on balls in l2 the weak
topology is metrizable (see §6.10(ii)).

We warn the reader that the established equivalence of continuity in the norm
topology and the weak topology does not extend to intermediate topologies (Exer-
cise 8.6.47).

Yet another remarkable property of the weak topology of a normed space is
the fact that the supply of convex weakly closed sets is the same as in the original
topology, although the supply of norm closed sets is larger than that of weakly
closed sets (in the infinite-dimensional case).

6.6.9. Theorem. A convex set V in a normed space X is closed in the weak
topology precisely when it is norm closed. In addition, V is the intersection of all
closed halfspaces of the form {x : l(x) 6 c}, l ∈ X∗ containing V .

PROOF. Let V be norm closed and u 6∈ V . By Corollary 6.3.9 there exists
l ∈ X∗ with l(u) > c := supv∈V l(v), i.e., V ⊂ Π := {x : l(x) 6 c} and u 6∈ Π,
which proves the last assertion that implies the first one at once. �

A convex set open in the norm topology can fail to have inner points in the
weak topology (as, for example, an open ball). One should bear in mind that the
established theorem does not extend to the weak-∗ topology in the dual space (see
Exercise 6.10.161).

6.6.10. Corollary. Suppose that a sequence of vectors xn in a normed
space X converges weakly to x ∈ X . Then there exists a sequence of vectors
vn in the convex envelope of {xn} converging to x in norm.

PROOF. The point x belongs to the closure V of the convex envelope of the
sequence {xn} in the weak topology. It remains to observe that V is convex.
Indeed, let u, v ∈ V , t ∈ [0, 1]. For every basis neighborhood of zero U in the
weak topology there exist points u1, v1 ∈ conv {xn} with u − u1, v − v1 ∈ U .
Then tu1 +(1− t)v1 ∈ conv {xn} and tu+(1− t)v− [tu1 +(1− t)v1] ∈ U . Since
U was arbitrary, we obtain tu+ (1 − t)v ∈ V , which proves the weak closedness
of the set V . �

By analogy with the topology of the pointwise convergence on the space of
functionals one can introduce a topology on the space of operators. Let X and Y
be normed spaces. The space of operators L(X,Y ) has, of course, the weak
topology of a normed space. However, the weak operator topology is an even
weaker topology in which the basis of neighborhoods of zero has the form

{A ∈ L(X,Y ) : |li(Axi)| < ε, i = 1, . . . , n}, xi ∈ X, li ∈ Y ∗.

If X = Y are Hilbert spaces, then such neighborhoods are determined by “matrix
elements” (Aui, vi). In the infinite-dimensional case, the weak operator topology
is weaker than the topology σ

(
L(X),L(X)∗

)
, because not every continuous func-

tional on L(X) is a finite linear combination of matrix elements. One more useful
topology on L(X,Y ) corresponds to the pointwise convergence of operators. It
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is called the strong operator topology. The corresponding neighborhoods of zero
have the form

{A ∈ L(X,Y ) : ‖Axi‖ < ε, i = 1, . . . , n}, xi ∈ X.

The strong and weak operator topologies are also considered in Exercises 6.10.187
and 7.10.118.

6.7. Compactness in the Weak-∗ Topology

This section contains two important results connected with compactness in the
weak and weak-∗ topologies.

6.7.1. Theorem. Let X be a separable normed space. Then every bounded
sequence of linear functionals on X contains a weak-∗ convergent subsequence.

PROOF. Let fn ∈ X∗ and ‖fn‖ 6 C. Let us take an everywhere dense count-
able set {xk} in X . Extract in {fn} a subsequence {f1,n} for which the sequence
{f1,n(x1)} converges. Next we extract a subsequence {f2,n} in {f1,n} for which
the sequence {f2,n(x2)} converges. Continuing by induction, we construct embed-
ded sequences {fk,n} with k ∈ IN for which the sequences {fk,n(xk)} converge.
It is clear that the sequence {fn,n} converges at every element xk. This sequence
also converges at every element x ∈ X , since for every ε > 0 there exists a vector
xk such that ‖x− xk‖ 6 ε, which gives |fn,n(x)− fn,n(xk)| 6 Cε for all n. It is
clear that the equality f(x) = lim

n→∞
fn,n(x) defines an element of the dual space

X∗ with ‖f‖ 6 C. �

The established property means the sequential compactness of the ball in the
dual space to any separable normed space with respect to the weak-∗ topology
(in §6.10(ii) we verify the metrizability of this topology on balls). This property
does not follows from the usual compactness, and without the separability condi-
tion it cannot be guaranteed. For example, the sequence of functionals fn(x) = xn
on l∞ does not contain a pointwise convergent subsequence (for every subse-
quence {fnk

} there is an element x ∈ l∞ such that {xnk
} has no limit). In the

general case one has compactness in the weak-∗ topology. The proof given below
employs some facts from the complementary material of Chapter 1. However, for
most of applications it is enough to have the previous elementary result.

6.7.2. Theorem. (THE BANACH–ALAOGLU–BOURBAKI THEOREM) In the
space dual to a normed space, closed balls are compact in the weak-∗ topology.

PROOF. It suffices to consider the unit ball S of the space X∗ dual to a
normed space X with the closed unit ball U . According to Tychonoff’s theorem,
the product of U copies of the closed interval [−1, 1] is compact in the product
topology, i.e., the space of all functions on U with values in [−1, 1] is compact in
the topology of pointwise convergence. Let us embed S into K := [−1, 1]U with
the aid of the mapping J(l)(x) = l(x), x ∈ U . It is easy to see that this mapping
is a homeomorphism between the set S and its image in K. Hence it suffices to
verify that J(S) is closed in K. Let y be an element of K that is a limit point
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for J(S). This means (see 1.9(i)) that there exists a net of elements yα ∈ S such
that the net {yα(x)} converges to y(x) for every x ∈ U . By the linearity of all
yα convergence holds for every x ∈ X . The function z defined by the formula
z(x) = lim

α
yα(x) is linear on X and coincides with y on U . Hence z ∈ X∗. Thus,

y = J(z). Of course, a similar reasoning can be given in terms of neighborhoods
in the weak-∗ topology without nets. �

In the case of a Hilbert space H we obtain analogous assertions for the weak
topology, since the canonical isomorphism between H and H∗ identifies the weak
topology on H with the weak-∗ topology on H∗.

6.7.3. Theorem. Let H be a Hilbert space. Then every bounded sequence
in H contains a weakly convergent subsequence.

In particular, the closed unit ball in H is sequentially compact in the weak
topology.

PROOF. Let ‖hn‖ 6 C. The closure of the linear span of {hn} is a separable
Hilbert space. Denote it by H0. In H0, according to what has been proved, we
can extract a weakly convergent subsequence in {hn}. It will converge weakly
also in the whole space H , since every functional l ∈ H∗ is represented by a
vector v ∈ H , which can be decomposed into the sum v = v0 + v′, where
v′ ⊥ H0. Hence the action of l on H0 coincides with the action of the functional
generated by the vector v0. �

A similar assertion is true for any reflexive Banach space (Exercise 6.10.118).
Here we consider the following particular case.

6.7.4. Theorem. If 1 < p < ∞, then every bounded sequence in Lp(IRn)
contains a weakly convergent subsequence.

PROOF. We know that Lp(IRn) can be identified with the dual to Lq(IRn),
where q−1 + p−1 = 1. Under this identification the weak topology of Lp cor-
responds to the weak-∗ topology of the dual space. It remains to apply Theo-
rem 6.7.1. �

Unlike Hilbert spaces (and some other spaces), in the general case the weak
topology does not possess the property of the weak-∗ topology established in The-
orem 6.7.1. For example, the sequence of functions xn(t) = tn in C[0, 1] does not
contain a weakly convergent subsequence (although the sequence itself is funda-
mental in the weak topology). The sequence of functions xn(t) = sin(πnt) does
not even contain a subsequence that would be fundamental in the weak topology
(i.e., the values of every continuous linear functional on it would form a Cauchy
sequence of numbers). In will be shown in §6.10(iii) that balls in nonreflexive
spaces are never weakly compact.

Now we can show that every Banach space is a closed linear subspace in some
space C(K), where K is a compact space. Any separable space can be embedded
into C[0, 1]: this fact is proved below in Theorem 6.10.24.
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6.7.5. Theorem. Every Banach space is linearly isometric to a closed linear
subspace of the space C(K), where K is a compact space.

PROOF. For K it is natural to take the closed unit ball of the space X∗ with
the weak-∗ topology. Now to every x ∈ X we associate the function ψx ∈ C(K)
by the formula ψx(f) = f(x), f ∈ K. Then supf∈K |f(x)| = ‖x‖. Thus, x 7→ ψx
is a linear isometry. �

The next result (Goldstine’s theorem) is yet another example of application of
the Hahn–Banach theorem.

6.7.6. Theorem. Let X be a normed space, U
X

and U
X∗∗ the closed unit

balls in X and X∗∗, and let J : X → X∗∗ be the canonical embedding. Then the
set J(U

X
) is everywhere dense in U

X∗∗ in the topology σ(X∗∗, X∗). Hence J(X)
is everywhere dense in X∗∗ in the topology σ(X∗∗, X∗).

PROOF. By Theorem 6.7.2 the ball U
X∗∗ is compact in σ(X∗∗, X∗). Let V

be the closure of J(U
X

) in this topology. It is also compact. If V 6= U
X∗∗ , then

there is x∗∗ ∈ U
X∗∗ \V . By Corollary 6.3.9 applied to the weak-∗ topology, there

exists an element l ∈ X∗ such that x∗∗(l) > supu∈U
X
Ju(l). Such a form of the

corollary of the Hahn–Banach theorem will be proved in Corollary 8.3.8, so here
we give a direct proof of the existence of l. To this end, using the σ(X∗∗, X∗)-
compactness of V , we find a σ(X∗∗, X∗)-neighborhood of zero W in X∗∗ of the
form

W = {z∗∗ ∈ X∗∗ : |z∗∗(li)| < 1, i = 1, . . . , n}, li ∈ X∗,
for which (x∗∗+W )∩V = ∅. Set P : X∗∗→ IRn, Pz∗∗=

(
z∗∗(l1), . . . , z∗∗(ln)

)
.

The convex compact set P (V ) does not contain the point Px∗∗. Applying the
Hahn–Banach theorem to the finite-dimensional space P (X∗∗), we obtain a lin-
ear functional f on P (X∗∗) with f(Px∗∗) > suph∈P (U

X
) f(h). The functional

f ◦P is generated by an element of X∗, since it is a linear combination of
l1, . . . , ln, because it vanishes on the intersection of the kernels of li. Thus, the
desired functional l ∈ X∗ is found. It remains to observe that ‖x∗∗‖ 6 1 and
supu∈U

X
|Ju(l)| = supu∈U

X
|l(u)| = ‖l‖, so that the inequality x∗∗(l) > ‖l‖ is

impossible. �

With the aid of this theorem it is easy to prove that the reflexivity of a Banach
space is equivalent to the weak compactness of its closed unit ball (see Theo-
rem 6.10.10).

6.8. Adjoint and Selfadjoint Operators

Let X,Y be normed spaces. For every operator T ∈ L(X,Y ) and every
functional y∗ ∈ Y ∗, the function T ∗y∗ on X given by the formula

〈T ∗y∗, x〉 := 〈y∗, Tx〉, i.e., T ∗y∗(x) := y∗(Tx),

is linear and continuous on X . The obtained linear mapping

T ∗ : Y ∗ → X∗
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is called the adjoint operator. It is continuous and satisfies the equality

‖T ∗‖ = ‖T‖.
Indeed,

‖T ∗y∗‖ = sup
‖x‖61

|T ∗y∗(x)| = sup
‖x‖61

|y∗(Tx)| 6 ‖T‖‖y∗‖,

since ‖Tx‖ 6 ‖T‖. On the other hand, for every ε > 0 there exists x ∈ X
with ‖x‖ = 1 and ‖Tx‖ > ‖T‖ − ε. By the Hahn–Banach theorem there exists a
functional y∗ ∈ Y ∗ with ‖y∗‖ = 1 and

|T ∗y∗(x)| = |y∗(Tx)| = ‖Tx‖ > ‖T‖ − ε,

which gives ‖T ∗‖ > ‖T‖.
For all A,B ∈ L(X) we have

(A+B)∗ = A∗ +B∗, (AB)∗ = B∗A∗, (6.8.1)

which is easy to verify.
There is the following connection between the range of the operator and the

kernel of its adjoint.

6.8.1. Lemma. Let A ∈ L(X,Y ). Then

A(X) = {y ∈ Y : f(y) = 0 ∀f ∈ KerA∗} =
⋂

f∈KerA∗

Ker f.

PROOF. Let y = Ax and f ∈ KerA∗. Then

f(y) = f(Ax) = (A∗f)(x) = 0.

Thus, A(X) belongs to the right-hand side of the relation in question. Since the
latter is closed, it contains the closure of A(X). Conversely, suppose that a vector
y ∈ Y belongs to the right-hand side, but does not belong to Y1 := A(X). By
Corollary 6.3.9 there exists f ∈ Y ∗ with f(y) = 1 and f |Y1 = 0. For every x ∈ X
we have (A∗f)(x) = f(Ax) = 0. Hence f ∈ KerA∗. Then f(y) = 0 by our
condition on y, which gives a contradiction. �

In the case of a Hilbert space H (real or complex) for an operator A∈L(H)
we define the adjoint operator A∗ by the equality

(Ax, y) = (x,A∗y).

Since the left-hand side is continuous in x, by the Riesz theorem there is a uniquely
defined vector A∗y satisfying the indicated equality. It is clear that the operator
A∗ is linear. The difference from the case of a Banach space is that the adjoint
operator acts on the same space as the original one. This definition is consistent
with the general case of a Banach space: identifying the functional l : x 7→ (x, v)
with the vector v, we obtain (A∗l)(x) = l(Ax) = (Ax, v) = (x,A∗v). Note,
however, the following nuance arising in the complex case: for a Hilbert space we
have (λA)∗ = λA∗, but for a Banach space (λA)∗ = λA∗. Thus, in case of a
complex Hilbert space the adjoint operator in the category of Hilbert spaces does
not coincide with the adjoint operator in the category of Banach spaces. This is
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explained by the fact that the natural isometry between H∗ and H is conjugate-
linear, but not linear.

In the case of a Hilbert space X we have the obvious equality

(A∗)∗ = A.

Hence here every bounded operator is adjoint to a bounded operator. For general
Banach spaces the situation is different, which is discussed in Exercises 6.10.151
and 6.10.152.

The next definition introduces a very important class of operators on complex
or real Hilbert spaces.

6.8.2. Definition. A bounded linear operator A on a Hilbert space H is
called selfadjoint if A∗ = A, i.e., (Ax, y) = (x,Ay) for all x, y ∈ H .

Sometimes bounded selfadjoint operators are called Hermitian operators or
symmetric operators, but in case of unbounded not everywhere defined operators
one has to distinguish selfadjoint and symmetric operators (see Chapter 10), so in
this chapter we do not use the term “symmetric operator”.

6.8.3. Example. (i) Let P be the operator of orthogonal projection onto a
closed linear subspace H0 in a Hilbert space H (see §5.4). Then P is selfadjoint.
Indeed, (Px, y) = (Px, Py) = (x, Py), because Px, Py ∈ H0, x − Px ⊥ H0

and y − Py ⊥ H0.
(ii) The diagonal operator from Example 6.1.5(vii) is selfadjoint precisely

when all αn are real.

Given a bounded operator A on a real Hilbert space H , one can take the com-
plexification HC of the space and define the complexification AC of the operator
A by the formula AC(x+ iy) := Ax+ iAy, x, y ∈ H . We observe that the oper-
ator A in a real space is selfadjoint precisely when the operator AC is selfadjoint.
Indeed, if A = A∗, then(

AC(x+ iy), u+ iv
)

= (Ax+ iAy, u+ iv)

= (Ax, u) + (Ay, v) + i(Ay, u) − i(Ax, v)

= (x,Au) + (y,Av) + i(y,Au) − i(x,Av) =
(
x+ iy, AC(u+ iv)

)
.

The complexification of a selfadjoint operator on a real space is actually the
direct sum of two copies of this operator. Most of the results of the spectral theory
are valid for complex spaces, but in case of selfadjoint operators many facts remain
in force in the real case.

In the case of a Hilbert spaceH , for the adjoint operator in the sense of Hilbert
spaces Lemma 6.8.1 can be restated in the following way.

6.8.4. Lemma. Let A ∈ L(H). Then

A(H) = (KerA∗)⊥, A∗(H) = (KerA)⊥,

moreover, one has the orthogonal decomposition

H = A(H) ⊕ KerA∗ = A∗(H) ⊕ KerA.
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If the operator A is selfadjoint, then A(H) ⊥ KerA and

H = A(H) ⊕ KerA.

PROOF. It is clear from Lemma 6.8.1 that the subspaces A(H) and KerA∗

are mutually orthogonal and A(H) = (KerA∗)⊥, which also gives the orthogonal
decomposition of H . Since A∗∗ = A, we obtain the remaining equalities. �

It is seen from these equalities that the operator A maps A∗(H) one-to-one
onto A(H), and if the sets A∗(H) and A(H) are closed, then the first one is
mapped one-to-one onto the second one.

With the aid of the adjoint operator one can give the following condition for
the surjectivity of an operator.

6.8.5. Proposition. Let X,Y be Banach spaces and A ∈ L(X,Y ). The
equality A(X) = Y is equivalent to the property that for some c > 0 we have

‖A∗y∗‖
X∗ > c‖y∗‖

Y ∗ ∀ y∗ ∈ Y ∗. (6.8.2)

PROOF. Let A(X) = Y and y∗ ∈ Y ∗. According to Remark 6.2.4 there
exists ε > 0 such that for every y ∈ Y there is x ∈ X with Ax = y and
‖x‖

X
6 ε−1‖y‖

Y
. Taking y such that ‖y‖

Y
= 1 and |y∗(y)| > ‖y∗‖

Y ∗ /2, we
obtain

‖A∗y∗‖
X∗ ‖x‖X

> |A∗y∗(x)| = |y∗(Ax)| = |y∗(y)| > ‖y∗‖
Y ∗ /2,

whence ‖A∗y∗‖
X∗ > ε‖y∗‖

Y ∗ /2.
Conversely, suppose we have (6.8.2). In view of Lemma 6.2.1 it suffices

to verify that the closure of A
(
UX(0, 1)

)
contains the ball UY (0, c). If this is

false, then there exists a vector y ∈ Y with ‖y‖
Y

6 c not belonging to the
indicated closure. According to a corollary of the Hahn–Banach theorem, there is
a functional y∗ ∈ Y ∗ such that |y∗(y)| > 1 and |y∗(Ax)| 6 1 whenever ‖x‖

X
6 1.

Then |A∗y∗(x)| = |y∗(Ax)| 6 1 whenever ‖x‖
X

6 1, i.e., ‖A∗y∗‖
X∗ 6 1. Now

from (6.8.2) we have ‖y∗‖
Y ∗ 6 c−1. Since ‖y‖

Y
6 c, we obtain |y∗(y)| 6 1,

which is a contradiction. �

6.8.6. Corollary. Let X,Y be Banach spaces and A ∈ L(X,Y ). (i) The set
A(X) is closed if and only if the set A∗(Y ∗) is closed.

(ii) The operator A maps X one-to-one onto Y if and only if A∗ maps the
space Y ∗ one-to-one onto X∗.

PROOF. (i) Let the subspace Z := A(X) be closed. Denote by A0 the opera-
tor A considered with values in Z. According to the proposition above, for some
c > 0 we have ‖A∗

0z
∗‖

X∗ > c‖z∗‖
Z∗ . Suppose that a sequence {y∗n} ⊂ Y ∗ is

such that A∗y∗n → x∗ in X∗. The restriction of y∗n to Z will be denoted by z∗n.
We observe that A∗y∗n = A∗

0z
∗
n, since both functionals give yn(Ax) on any vec-

tor x ∈ X . Therefore, the functionals z∗n converge in Z∗ to some z∗ ∈ Z∗. We
extend z∗ to Y and obtain an element y∗ ∈ Y ∗. Then A∗y∗ = A∗

0z
∗ = x∗, which

proves the closedness of A∗(Y ∗).
If the closedness of A∗(Y ∗) is given, then the subspace A∗

0(Z∗) is also closed.
Indeed, if z∗n ∈ Z∗ and A∗

0z
∗
n → x∗, then we can extend z∗n to functionals y∗n ∈ Y ∗.
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As above, we have A∗y∗n = A∗
0z

∗
n. By the closedness of A∗(Y ∗) there exists

y∗ ∈ Y ∗ with A∗y∗n → A∗y∗. Let z∗ := y∗|Z . Then A∗
0z

∗ = A∗y∗ = lim
n→∞

A∗
0z

∗
n.

The operator A∗
0 is injective, because the set A(X) is dense in Z. Since the

operator A∗
0 has a closed range, its inverse is continuous. Hence (6.8.2) is true,

which gives the equality A(X) = Z and the closedness of A(X).
(ii) If the operator A is an isomorphism, then obviously A∗ is also an iso-

morphism, since for every x∗ ∈ X∗ the functional y∗(y) = x∗(A−1y) is con-
tinuous and A∗y∗ = x∗. Moreover, A∗ has the zero kernel by Lemma 6.8.1.
If A∗ is an isomorphism, then by the proposition above A(X) = Y . In ad-
dition, A has the zero kernel. Indeed, if Ax = 0 and x 6= 0, then there is
x∗ ∈ X∗ with x∗(x) = 1, which for y∗ = (A∗)−1x∗ gives the contradictory
equality 1 = x∗(x) = A∗y∗(x) = y∗(Ax) = 0. �

6.8.7. Example. (THE LAX–MILGRAM LEMMA) Let H be a real Hilbert
space and let A ∈ L(H) be such that (Ax, x) > c(x, x) for some c > 0. Then
A(H) = H , since ‖A∗y‖ > c‖y‖ by the estimate (A∗y, y) = (y,Ay) > c(y, y).

The adjoint operator can be defined for not necessarily bounded linear map-
pings (see Chapter 10), but such adjoint will not be defined on the whole space.

6.8.8. Example. Let A be a linear mapping from a Banach space X to a
Banach space Y such that there exists a linear mapping A∗ : Y ∗ → X∗ for which
l(Ax) = (A∗l)(x) for all x ∈ X and l ∈ Y ∗. Then A is continuous.

In particular, ifX is a Hilbert space and an everywhere defined linear mapping
A : X → X is such that for all x, y ∈ X we have (Ax, y) = (x,Ay), then A is
continuous.

PROOF. The graph of A is closed, because if xn → x and Axn → y, then
l(Axn) = (A∗l)(xn) → (A∗l)(x) = l(Ax) for all l ∈ Y ∗, whence l(y) = l(Ax),
which means that Ax = y. �

6.9. Compact Operators

In this section we begin our study of one special class of operators that is very
important for applications.

6.9.1. Definition. Let X and Y be Banach spaces. A linear operator
K : X → Y is called compact if it takes the unit ball to a set with compact
closure. The class of compact operators from X to Y is denoted by the sym-
bol K(X,Y ).

In terms of sequences compactness of the operator K means that for every
bounded sequence {xn} in X the sequence {Kxn} must contain a convergent
subsequence.

It is clear from the definition that any compact operator is bounded. A similar
definition can be introduced in case of not necessarily complete normed spaces,
but here there is another, somewhat more general definition (equivalent to the
given one in case of complete Y ): the image of the unit ball is totally bounded.
Such operators are called completely bounded.
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The simplest example of a compact operator is the zero operator. Another
obvious example is a bounded operator with a finite-dimensional range. It is
important here that in any finite-dimensional normed space every bounded set is
totally bounded. The reader should be warned: not every linear operator with a
finite-dimensional range is compact, since there are unbounded finite-dimensional
operators (for example, discontinuous linear functionals). The simplest example of
an operator that is not compact is the identity mapping of any infinite-dimensional
Banach spaces, i.e., the unit operator.

For the sequel we note some elementary properties of totally bounded sets in
normed spaces.

6.9.2. Lemma. (i) A bounded linear operator takes any totally bounded set
to a totally bounded set.

(ii) If sets A and B in normed spaces X and Y are totally bounded, then
A×B is totally bounded in X×Y .

(iii) If sets A and B in a normed space are totally bounded, then the set
αA + βB is totally bounded for all numbers α and β. If A and B are compact,
then this set is compact as well.

PROOF. The Lipschitzness of a bounded linear operator gives (i) (see Exam-
ple 1.7.6). Assertion (ii) follows from Exercise 1.9.41. The first assertion in (iii)
follows from (i) and (ii), since αA and βB are obviously totally bounded and the
operator (x, y) 7→ x + y from X×X to X is continuous. The same reasoning
gives compactness of αA+ βB in case of compact A and B. �

The main properties of compact operators are collected in the following theo-
rem.

6.9.3. Theorem. Let X , Y and Z be Banach spaces.
(i) The class K(X,Y ) is a closed linear subspace in the space L(X,Y ).
(ii) If A ∈ K(X,Y ) and B ∈ L(Y,Z) or if A ∈ L(X,Y ) and B ∈ K(Y, Z),

then BA ∈ K(X,Z).
(iii) An operatorK ∈ L(X,Y ) is compact precisely when the adjoint operator

K∗ : Y ∗ → X∗ is compact.

PROOF. (i) Let A,B ∈ K(X,Y ) and let U be the unit ball in X . Then
(A + B)(U) ⊂ A(U) + B(U), (λA)(U) = λA(U). It remains to recall that the
algebraic sum of two totally bounded sets and a homothetic image of a totally
bounded set are totally bounded (Lemma 6.9.2).

Let Kn ∈ K(X,Y ), K ∈ L(X,Y ) and ‖Kn − K‖ → 0. For every ε > 0
there exists a number N such that ‖Kn −K‖ 6 ε for all n > N . This means that
the set Kn(U) is an ε-net for K(U). Then a finite ε-net existing in Kn(U) serves
as a 2ε-net for K(U).

(ii) The set A(U) is totally bounded in Y , so its image under B is totally
bounded in Z.

(iii) Let K ∈ K(X,Y ). Let V be the unit ball in Y ∗. Let us verify that the set
K∗(V ) is totally bounded in X∗. Suppose that we are given a sequence of func-
tionals fn ∈ V . We have to show that the sequence of functionalsK∗fn contains a
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subsequence uniformly converging on the unit ball U of the space X . For this we
apply the Ascoli–Arzelà theorem (see Theorem 1.8.4). Since K∗fn(x) = fn(Kx)
and the set K(U) has compact closure, denoted by S, we only need to observe
that the functions fn are uniformly bounded on S and uniformly Lipschitz, which
follows from the bound ‖fn‖ 6 1. Thus, every sequence in K∗(V ) contains a
convergent subsequence, which means the compactness of K∗(V ).

Suppose now that K∗ ∈ K(Y ∗, X∗). It follows from what we have proved
that K∗∗ : X∗∗ → Y ∗∗ is a compact operator. Moreover,

K∗∗J1x = J2Kx for all x ∈ X ,

where J1 : X → X∗∗ and J2 : Y → Y ∗∗ are the canonical isometric embeddings.
Indeed, for every f ∈ Y ∗ we have

(K∗∗J1x)(f) = (J1x)(K∗f) = (K∗f)(x) = f(Kx) = (J2Kx)(f).

By the isometry of the embedding we obtain the compactness of the closure of the
set K(U) in Y . �

Yet another simple property of a compact operator K on any space X is the
separability of K(X), which follows obviously from the separability of the images
of all balls of radius n (since these images are also totally bounded).

Let us give some examples of compact operators.

6.9.4. Example. (i) Let {αn} be a bounded sequence of numbers. The
diagonal operator

A : l2 → l2, (xn) 7→ (αnxn),

is compact precisely when lim
n→∞

αn = 0.

(ii) Let K ∈ C([0, 1]2). Then the integral operator

Kx(t) =
∫ 1

0

K(t, s)x(s) ds

on the space C[0, 1] is compact.
(iii) Let K ∈ L2([0, 1]2). Then the integral operator

Kx(t) =
∫ 1

0

K(t, s)x(s) ds

on the space L2[0, 1] is compact. The function K defining the integral operator K
is called the integral kernel.

(iv) The Volterra operator

V x(t) =
∫ t

0

x(s) ds

is compact as an operator from L1[0, 1] to Lp[0, 1] with 1 6 p < ∞ and also
as an operator from Lp[0, 1] to C[0, 1] with p > 1. However, the operator
V : L1[0, 1] → C[0, 1] is not compact.
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PROOF. (i) Let lim
n→∞

αn = 0. Let us consider the finite-dimensional operators

Kn : (xn) 7→ (α1x1, . . . , αnxn, 0, 0, . . .). We have ‖K−Kn‖ 6 supi>n |αi| → 0
as n→∞. Thus, K is a compact operator.

If {αn} contains a subsequence {αni} such that |αni | > c > 0, then the
sequence of vectors Keni = αnieni , where en is the vector with 1 at the nth place
and 0 at all other places, contains no Cauchy subsequence. Hence the operator K
is not compact.

(ii) The set M of functions Kx, where ‖x‖ 6 1, is totally bounded by the
Ascoli–Arzelà theorem. Indeed, this set is bounded by the boundedness of K. In
addition, M is equicontinuous: by the uniform continuity of K, for every ε > 0
there is δ > 0 such that |K(t, s) −K(t′, s)| 6 ε if |t− t′| 6 δ, so

|Kx(t) −Kx(t′)| 6
∫ 1

0

|K(t, s) −K(t′, s)| |x(s)| ds 6 ε if ‖x‖ 6 1.

(iii) For every function x ∈ L2[0, 1] the function K(t, s)x(s) is integrable in
s for almost all t, since by Fubini’s theorem K(t, · ) ∈ L2[0, 1] for almost all t.
Hence the function Kx is defined almost everywhere. By the Cauchy inequality∣∣∣∣∫ 1

0

K(t, s)x(s) ds
∣∣∣∣2 6

∫ 1

0

|K(t, s)|2 ds
∫ 1

0

|x(s)|2 ds,

which after integration in t over [0, 1] gives the estimate∫ 1

0

|Kx(t)|2 dt 6 ‖x‖2

∫ 1

0

∫ 1

0

|K(t, s)|2 ds dt.

Thus, ‖K‖ 6 ‖K‖L2([0,1]2). Now we take a sequence of functions Kn on [0, 1]2

of the form Kn(t, s) =
∑
i,j6n cijϕi(t)ψj(s), where ϕi, ψj ∈ L2[0, 1], such that

‖Kn − K‖L2([0,1]2). The operators Kn defined by the functions Kn converge in
the operator norm to K due to the estimate obtained above. It remains to observe
that these operators are finite-dimensional: the range of Kn is contained in the
linear span of the functions ϕ1, . . . , ϕn.

(iv) The image of the unit ball U from L1[0, 1] is bounded in C[0, 1]. If
{fn} ⊂ U , then V fn = V (f+

n ) − V (f−n ). The functions V (f+
n ) are monotone

and uniformly bounded. Hence one can extract a subsequence pointwise con-
verging on [0, 1] (see Exercise 4.5.20). Selecting yet another subsequence {fnk

}
for which the monotone functions V (f−nk

) converge everywhere, we obtain a uni-
formly bounded pointwise convergent sequence {V fnk

}. By the Lebesgue domi-
nated convergence theorem it converges in all Lp[0, 1]. This gives compactness of
V as an operator with values in Lp[0, 1]. But there is no compactness of V with
values in C[0, 1]: the sequence V fn, where fn = nI[0,1/n], is not equicontinuous,
since it converges pointwise to the indicator function of (0, 1]. Finally, for p > 1
the operator V : Lp[0, 1] → C[0, 1] is compact, since in addition to the uniform
boundedness of the image of the unit ball from Lp[0, 1] one has the equicontinuity
of this image, which follows from the estimate

|V x(t) − V x(t′)| 6
∣∣∣∣∫ t

t′
|x(s)| ds

∣∣∣∣ 6 |t− t′|1−1/p,

fulfilled by Hölder’s inequality. �
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Quite often (but not always) for proving the compactness of an operator its
approximations by finite-dimensional operators are constructed. In many concrete
spaces the class of compact operators coincides with the closure of the set of
finite-dimensional operators.

6.9.5. Proposition. Let H be a Hilbert space. Then the set K(H) of com-
pact operators coincides with the closure of the set of bounded finite-dimensional
operators with respect to the operator norm. If H is separable and {en} is an
orthonormal basis, then for every K ∈ K(H) we have ‖K − PnK‖ → 0, where
Pn is the orthogonal projection onto the linear span of the vectors e1, . . . , en.

PROOF. We have to show that every operator K ∈ K(H) can be approx-
imated by finite-dimensional ones. As noted above, the image of any compact
operator is separable, so we can deal with a separable space H and prove the last
assertion of the proposition. This assertion follows from the criterion of compact-
ness in H , since the image of the ball under K is contained in a compact set S,
whence ‖K − PnK‖2 6 supy∈S

∑∞
i=n+1 |(y, ei)|2 → 0. �

A similar assertion is true for C[0, 1] and more generally for spaces with
Schauder bases (see §6.10(iv)). For a long time it was unknown whether this
is true for all Banach spaces; only in 1973 did P. Enflo publish a disproving
counterexample.

Let us give a simple sufficient condition for the noncompactness of an operator
(in case of a Hilbert space this condition is also necessary).

6.9.6. Example. Let X and Y be Banach spaces and A ∈ L(X,Y ). If A(X)
contains an infinite-dimensional closed subspace, then A is not compact. Indeed,
if E is a closed subspace in A(X) and U is the unit ball in X , then by Baire’s
theorem there is n ∈ IN such that the closure of A(nU)∩E contains a ball from E.
Since this closure is totally bounded, the space E is finite-dimensional.

Note that the image of the closed unit ball under a compact operator can fail
to be closed (hence it need not be compact).

6.9.7. Example. (i) Let us take the continuous linear functional l on C[0, 1]
from Example 6.1.5(iii), which does not attain its maximum on the ball. The image
of the closed unit ball under l is the interval (−1, 1).

(ii) The image of the closed unit ball in C[−1, 1] under the Volterra operator

V x(t) =
∫ t

−1

x(s) ds

is not closed in C[−1, 1], since the function x(t) = |t| belongs to the closure of
this image, but does not belong to the image itself.

On the other hand, there is a positive result about compactness of the image
of the ball.

6.9.8. Proposition. LetX be a reflexive Banach space (for example, a Hilbert
space), let Y be a normed space, and let K : X → Y be a completely bounded
operator. Then the image of every closed ball in X is compact in the space Y .
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PROOF. Let B be a closed ball and yn = Kxn, xn ∈ B. Passing to a sub-
sequence, we can assume that the sequence {yn} is Cauchy. Using the reflexivity
of X , we can pass to a subsequence in {xn} that converges weakly to some el-
ement x ∈ B (see Exercise 6.10.118). We assume again that this is the whole
original sequence. Then the vectors yn = Kxn converge weakly to Kx. It is
readily seen (Exercise 6.10.96) that then ‖yn −Kx‖ → 0. �

In diverse concrete spaces compact operators may have additional interesting
properties. For example, the following Daugavet theorem holds.

6.9.9. Example. For every compact operator K on the space C[0, 1] one has

‖K + λI‖ = ‖K‖ + |λ| ∀λ ∈ C.

PROOF. It suffices to consider the case λ = 1. We first consider K of the
form Kx =

∑n
i=1 li(x)xi, where li ∈ C[0, 1]∗, xi ∈ C[0, 1]. Due to the bound

‖K + λI‖ 6 ‖K‖ + |λ|, it suffices to establish the opposite inequality. We prove
that for every ε > 0 the inequality ‖K + λI‖ > ‖K‖ + |λ| − ε holds. Let us
find a function x for which ‖x‖ = 1 and ‖Kx‖ > ‖K‖ − ε/3. Next we find a
point t ∈ [0, 1] such that

∣∣∑n
i=1 li(x)xi(t)

∣∣ = ‖Kx‖. By the Riesz theorem the
functionals li have the form

li(x) =
∫

[0,1]

x(s)µi(ds),

where µi are bounded Borel measures on [0, 1]. We replace the taken point by
a point t such that µi(t) = 0 for all i (if this was not fulfilled at once) and also
r :=

∣∣∑n
i=1 li(x)xi(t)

∣∣ > ‖Kx‖ − ε/3. Let
∑n
i=1 li(x)xi(t) = reiθ, θ ∈ IR1. We

redefine the function x in a small neighborhood of t in order to obtain a continuous
function y with ‖y‖ = 1, y(t) = eiθ and |li(y) − li(x)| 6 ε(3nmaxi ‖xi‖)−1,
i = 1, . . . , n (we assume that not all functions xi are zero). Then

‖Ky + y‖ >
∣∣∣ n∑
i=1

li(y)xi(t) + y(t)
∣∣∣

>
∣∣∣ n∑
i=1

li(x)xi(t) + y(t)
∣∣∣− n∑

i=1

|li(y) − li(x)| ‖xi‖

> |reiθ + eiθ| − ε/3 = r + 1 − ε/3 > ‖Kx‖ + 1 − 2ε/3

> ‖K‖ + 1 − ε.

In the general case we find a sequence of finite-dimensional operators Kn with
‖K −Kn‖ → 0, which is possible by the compactness of K and Example 6.1.12.
Then ‖Kn‖ → ‖K‖ and ‖Kn + I‖ → ‖K + I‖. �

Operators on Hilbert spaces do not possess such a property (it suffices to take
a diagonal operator on C2 with eigenvalues 0 and −1). The equality fails for the
noncompact operator −I . Werner [711] gives a survey on the Daugavet property.

Compact operators are also discussed in Chapter 7.
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6.10. Complements and Exercises

(i) Operator ranges and factorization (229). (ii) Weak compactness in Banach spaces (231).
(iii) The Banach–Saks property and uniform convexity (240). (iv) Bases, approximations and
complements (241). (v) Operators on ordered vector spaces (247). (vi) Vector integration (253).
(vii) The Daniell integral (257). (viii) Interpolation theorems (263). Exercises (264).

6.10(i). Operator ranges and factorization

In this subsection we present a number of useful results connected with the
properties of the images of continuous linear mappings and with a close question
about the possibility of representing one of the two given operators in the form of
the composition of the second operator with some third operator. First we discuss
conditions under which a given linear subspace L in a Banach space X coincides
with the image of some operator T ∈ L(Z,X) on a Banach space Z. If in this
situation we are allowed to take arbitrary Banach spaces Z, then it suffices to
consider only injective operators T , since T (Z) = T̃ (Z/KerT ), where T̃ is the
factorization of T by its kernel, i.e., the operator on the quotient space taking the
equivalence class [z] of the element z ∈ Z to Tz. The image T (Z) of an injective
operator T can be equipped with the norm

‖x‖
T

:= ‖T−1x‖
Z
, x ∈ T (Z).

Then T (Z) with this norm turns out to be a Banach space the identity embedding
of which into X is continuous. Indeed, we have ‖x‖ 6 ‖T‖ ‖T−1x‖

Z
. If a se-

quence {xn} ⊂ T (Z) is Cauchy with respect to the norm above, then the sequence
{T−1xn} is Cauchy in Z and hence converges to some element z ∈ Z. Hence we
obtain xn → Tz and ‖Tz − xn‖T

→ 0.

6.10.1. Definition. A linear subspace E in a Banach space X is called a
continuously embedded Banach space if E is equipped with a norm ‖ · ‖

E
with

respect to which E is complete and the identity mapping (E, ‖ · ‖
E

) → (E, ‖ · ‖
X

)
is continuous.

If the balls with respect to the norm ‖ · ‖
E
are totally bounded in X , then E

is called compactly embedded.

Our discussion above leads to the following conclusion.

6.10.2. Proposition. A linear subspace L of a Banach space X is the image
of some continuous linear operator from a Banach space precisely when L can be
equipped with a norm with respect to which it will be a Banach space continuously
embedded into X .

The situation will change if we impose restrictions on Z. In this case it can
happen that there are no continuous operators on Z the image of which contains L.
For example, there is no continuous operator from l2 onto l1: otherwise l1 would
be linearly homeomorphic to a quotient space of l2, hence to a Hilbert space (and
then the space l∞ = (l1)∗ would be separable). For the same reason L2[0, 1] can-
not be mapped onto C[0, 1] by means of a bounded operator. However, C[0, 1] can
be mapped onto L2[0, 1] by means of a bounded operator (Exercise 6.10.174).
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Let us note the following property of operator ranges, or, which is the same,
continuously embedded Banach spaces.

6.10.3. Proposition. Let X and Y be Banach spaces and let an operator
A ∈ L(X,Y ) have a nonclosed range. Then the algebraic dimension of the
algebraic complement of A(X) in Y is uncountable.

PROOF. Otherwise there is a finite or countable set of vectors yn the linear
span of which algebraically complements A(X). Denote by En the linear span of
y1, . . . , yn. It is clear that A(X) +En is the image of the continuous operator An
acting from the Banach spaceXn := X⊕En to Y by the formula (x, y) 7→ Ax+y.
By Baire’s theorem for some n the image of the ball of radius n in Xn is dense in
some ball in Y . According to Lemma 6.2.1 this gives the equality An(Xn) = Y .
Hence A(X) has a finite codimension. According to Proposition 6.2.12, the image
of A is closed, which contradicts the assumption of the proposition. �

Let us mention the following nontrivial result due to V.V. Shevchik, the proof
of which can be found in [704] (see also Exercise 6.10.165 for the case of Hilbert
spaces).

6.10.4. Theorem. Let X be a separable Banach space and let E1 6= X be a
Banach space continuously embedded into X and everywhere dense in X . Then
there exists a separable Banach space E2 continuously embedded into X such that
E2 is also everywhere dense and E1 ∩ E2 = 0.

We now prove a useful result about factorization.

6.10.5. Theorem. Let X,Y, Z be Banach spaces and let A : X → Z and
B : Y →Z be continuous linear operators such that A(X)⊂B(Y ). If KerB = 0,
then there exists a continuous linear operator C : X → Y such that A = BC.

If the operator B is not injective, then there exists a continuous linear oper-
ator C : X → Y/KerB for which A = B̃C, where B̃ : Y/KerB → Z is the
factorization of B by the kernel.

PROOF. If KerB = 0, we have a well-defined linear mapping C : X → Y ,
Cx := B−1Ax. This mapping has a closed graph: if xn → x and Cxn → y,
then Axn → Ax and Axn = BCxn → By, whence Ax = By, i.e., y = Cx.
Therefore, the operator C is continuous. If the kernel of B is nontrivial, then we
pass to the injective operator B̃. �

6.10.6. Corollary. If in the situation of the previous theorem the operator B
is compact, then A is also compact.

6.10.7. Example. Since the natural embedding of C[0, 1] into L2[0, 1] is not
a compact operator (it suffices to consider functions xn(t) = sin(2πnt)), then
by the previous corollary there is no compact operator on L2[0, 1] with the range
containing C[0, 1].

The next result due to Banach and Mazur shows that every separable Banach
space is isomorphic to some factor-space of l1.
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6.10.8. Theorem. For every separable Banach space X , there exists an
operator A ∈ L(l1, X) with A(l1) = X .

PROOF. Let {xn} be a dense sequence in the unit ball of X . The operator

A : l1 → X, Aξ =
∞∑
n=1

ξnxn, ξ = (ξn)

is well-defined, since the series converges in norm. We have ‖Aξ‖ 6 ‖ξ‖. The
surjectivity of A follows from Lemma 6.2.1, since the image of the unit ball from
l1 is dense in the unit ball from X by construction. �

Note that if X is a Banach space and A : l2 → X is a continuous linear
surjection, then X has an equivalent Hilbert norm.

Let us give a typical example of using weak convergence simultaneously in
C[a, b] and L2[a, b] for establishing the compactness of an operator by means of
information about its range.

6.10.9. Example. Let A : L2[a, b] → L2[a, b] be a bounded linear operator
such that A(L2[a, b]) ⊂ C[a, b]. Then the operator A is compact. The same is true
if in place of an interval with Lebesgue measure we take an arbitrary topological
space T with a bounded Borel measure and replace C[a, b] by Cb(T ).

PROOF. We show that for every sequence {xn} bounded in L2 the sequence
{Axn} contains a subsequence converging in L2. We know that passing to a sub-
sequence we can assume that {xn} converges weakly to some element x from L2.
By Corollary 6.2.8 the operator A is continuous as an operator with values in the
Banach space C[a, b]. Hence by weak convergence xn → x the sequence {Axn}
is norm bounded and converges weakly in C[a, b] to Ax. Hence for every point
t ∈ [a, b] we have Axn(t) → Ax(t). By the Lebesgue dominated convergence
theorem we obtain convergence of Axn to Ax with respect to the norm of L2, as
required. It is clear that in this reasoning no special features of the interval are
used, so it works for every bounded Borel measure on a topological space. �

Below in Theorem 7.10.27 we establish an even stronger property of operators
on L2 with images in C. We recall that the identity embedding C[0, 1] → L2[0, 1]
is not a compact operator.

6.10(ii). Weak compactness in Banach spaces

In a Hilbert space the weak topology coincides with the weak-∗ topology after
identification of the space with its dual. In general Banach spaces (even in dual
spaces) there is no this phenomenon. The properties of the weak topology of a
Banach space can differ substantially from the properties of the weak-∗ topology
of its dual (but in a reflexive space the weak topology can be identified with the
weak-∗ topology of the dual to its dual). For example, the ball in the weak topology
need not be compact. Since weak topologies are often used in applications, we
make a short excursion in their theory, which is not included in basic courses.
In particular, we prove the most important theorems about weak topologies: the
Eberlein–Shmulian and Krein–Shmulian theorems.
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First we recall that the closed unit ball of a Banach space is not always com-
pact in the weak topology. We have actually encountered such example: in §6.1
we constructed a continuous linear functional on C[0, 1] not attaining its maximum
on the closed ball. It turns out that this example exhibits the general picture.

6.10.10. Theorem. Let X be a Banach space. The following assertions are
equivalent:

(i) closed balls in X are weakly compact;
(ii) every continuous linear functional on X attains its maximum on the closed

unit ball;
(iii) the space X is reflexive.

PROOF. Assertion (i) implies (ii), and (iii) implies (i) by the Banach–Alaoglu–
Bourbaki theorem, since the weak topology of a reflexive space X can be identi-
fied with the weak-∗ topology of the space X∗∗. The implication (ii)⇒(iii) is a
very deep result due to James (see also the next theorem); it is proved, for exam-
ple, in the book Diestel [147, Chapter 1]. We confine ourselves to the proof of
the elementary implication (i)⇒(iii). This assertion follows from Theorem 6.7.6,
since the weak compactness of the closed unit ball UX in X gives its σ(X∗∗, X∗)-
compactness and hence σ(X∗∗, X∗)-closedness in X∗∗. �

6.10.11. Corollary. (i) A Banach space X is reflexive precisely when X∗ is
reflexive.

(ii) Closed subspaces of a reflexive Banach space are reflexive.

PROOF. (i) If X is reflexive, then on X∗ the weak topology coincides with
the weak-∗ topology, which by the Banach–Alaoglu–Bourbaki theorem gives the
weak compactness of closed balls in X∗. If X∗ is reflexive, then by the already
proven assertion X∗∗ is reflexive. Hence the ball U

X∗∗ is weakly compact. The
ball U

X
is closed in U

X∗∗ in the norm topology and hence is weakly closed. Hence
it is weakly compact in X∗∗. Then it is weakly compact in X , since the weak
topology X∗∗ is stronger than the weak topology of X .

(ii) Let E be a closed subspace of a reflexive Banach space X . Then the
unit ball of E is the set E ∩ U

X
, which is weakly compact in X by the weak

closedness of E and the weak compactness of U
X
. It remains to observe that

the weak topology of E is the restriction of the weak topology of X to E. This
follows from the fact that every element l ∈ E∗ is the restriction to E of some
functional l̃ ∈ X∗. �

Actually James proved the following even more general fact (see [147, p. 19]).

6.10.12. Theorem. If B is a weakly closed bounded set in a Banach space X ,
then the weak compactness of B is equivalent to the property that every continuous
linear functional attains its maximum on B.

For working with weak topologies the following Eberlein–Shmulian theorem
is extremely important.

6.10.13. Theorem. Let A be a set in a Banach space X . Then the following
conditions are equivalent:



6.10. Complements and Exercises 233

(i) the set A has compact closure in the weak topology;
(ii) every sequence in A has a subsequence weakly converging in X;
(iii) every infinite sequence in A has a limit point in X in the weak topology

(i.e., a point every neighborhood of which contains infinitely many elements of this
sequence).

In particular, for sets in a Banach space with the weak topology compactness
is equivalent to the sequential compactness and is also equivalent to the countable
compactness.

PROOF. 1. First we show that any infinite sequence {an} in a weakly compact
set A in a Banach space X contains a weakly convergent subsequence. For this we
note the following simple fact (delegated to Exercise 6.10.119): if X∗ contains a
countable set {fn} separating points in X , then

(
A, σ(X,X∗)

)
is metrizable. Let

A0 be the weak closure of {an} and let E be the norm closure of the linear span
of {an}. Then the set E is weakly closed (being convex) and hence A0 is weakly
compact in E. This enables us to pass to the separable space E. Then E∗ con-
tains a countable family of functionals separating points. Hence

(
A0, σ(E,E∗)

)
is a metrizable compact space. Therefore, there is a subsequence in {an} that
converges weakly in E, hence, as is easily seen, also in X .

2. Suppose now that every infinite sequence in A has a limit point in the weak
topology. Let us prove that A is contained in a weakly compact set. We need the
following fact: if Z ⊂ X∗∗ is a finite-dimensional subspace, then the unit sphere
SX∗ in X∗ contains a finite set Λ such that

‖z∗∗‖ 6 2 max{|z∗∗(l)| : l ∈ Λ} ∀ z∗∗ ∈ Z.

To this end, using the norm compactness of the unit sphere SZ in Z, we choose
a finite 1/4-net z∗∗1 , . . . , z∗∗n for SZ . Next we take elements li ∈ SX∗ with
|z∗∗i (li)| > 3/4. Then for every z∗∗ ∈ SZ there is an element z∗∗k with the
property ‖z∗∗ − z∗∗k ‖ < 1/4, which gives the relation

z∗∗(lk) = z∗∗k (lk) + z∗∗(lk) − z∗∗k (lk) > 3/4 − 1/4 = 1/2,

whence the desired estimate for all z∗∗ ∈ Z follows.
We observe that A is norm bounded. Otherwise we could find a functional

l ∈ X∗ such that supa∈A |l(a)| = ∞. This would give a sequence {an} with
|l(an)| > n, hence this sequence cannot have limit points in the weak topol-
ogy. We shall regard A as a set in X∗∗ and denote by B its closure in the
topology σ(X∗∗, X∗), i.e., the weak-∗ topology of the space X∗∗ = (X∗)∗. By
the Banach–Alaoglu–Bourbaki theorem B is compact in the indicated topology.
Our goal is to show that actually B ⊂ X . Then it will turn out that A is con-
tained in a weakly compact set. Let x∗∗ ∈ B and l1 ∈ SX∗ . The neighborhood
{y∗∗ ∈ X∗∗ : |(x∗∗ − y∗∗)(l1)| < 1} contains an element a1 ∈ A. Then

|(x∗∗ − a1)(l1)| < 1.
Let us consider the linear span Z1 of the vectors x∗∗ and x∗∗−a1. The observation
made above gives elements l2, . . . , lk2 ∈ SX∗ with the property

‖z∗∗‖ 6 2 max{|z∗∗(li)| : i = 1, . . . , k2} ∀ z∗∗ ∈ Z1.
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Now we take the weak-∗ neighborhood of x∗∗ generated by l1, l2, . . . , lk2 and the
number 1/2 and find an element a2 ∈ A in this neighborhood, which gives the
bounds

|(x∗∗ − a2)(li)| < 1/2, i = 1, . . . , k2.

Next we take the linear span Z2 of the vectors x∗∗, x∗∗ − a1, x
∗∗ − a2 and with

the aid of our observation find functionals lk2+1, . . . , lk3 ∈ SX∗ with the property

‖z∗∗‖ 6 2 max{|z∗∗(li)| : i = 1, . . . , k3} ∀ z∗∗ ∈ Z2.

Continuing this process by induction we obtain a sequence of points an ∈ A and
functionals li ∈ SX∗ , kn−1 < i 6 kn for which

|(x∗∗ − an)(li)| < 1/2n, i = 1, . . . , kn,
‖z∗∗‖ 6 2 max{|z∗∗(li)| : i = 1, . . . , kn+1} ∀ z∗∗ ∈ Zn,

where Zn is the linear span of the elements x∗∗, x∗∗ − a1, . . . , x
∗∗ − an. Accord-

ing to our assumption, the sequence {an} has a limit point x ∈ X in the weak
topology. Since the norm closed linear span E of the sequence {an} is weakly
closed, we have x ∈ E. In the space X∗∗ the element x∗∗ − x is a limit point of
the sequence x∗∗, x∗∗−a1, x

∗∗−a2, . . . in the weak-∗ topology and hence belongs
to the closure F of the linear span of this sequence in the weak-∗ topology. By
our construction

‖z∗∗‖ 6 2 sup
i
|z∗∗(li)| (6.10.1)

for all z∗∗ from the linear span of x∗∗, x∗∗ − a1, x
∗∗ − a2, . . ., which obviously

extends (6.10.1) to all z∗∗ ∈ F . In particular, this inequality is fulfilled for
z∗∗ = x∗∗ − x. However, the construction of {an} and {li} and the fact that
x is a weak limit point of {an} imply that |(x∗∗ − x)(lm)| = 0 for all m. Thus,
‖x∗∗ − x‖ = 0, as required. �

6.10.14. Corollary. A Banach space is reflexive if and only if every separable
closed subspace in this space is reflexive.

PROOF. We have already seen that any closed subspace of a reflexive space is
reflexive. Suppose that separable subspaces in a spaceX are reflexive. Then every
sequence {xn} from the unit ball is contained in a separable closed subspace Y ,
which is reflexive by assumption, hence its closed ball is weakly compact. By the
Eberlein–Shmulian theorem {xn} contains a subsequence weakly converging in Y .
Then this subsequence also converges weakly inX , so the ball inX is sequentially
compact. Applying the Eberlein–Shmulian theorem again, we conclude that the
ball in X is weakly compact. An alternative justification follows from the James
theorem. �

The next theorem due to Krein and Shmulian is a deep analog of the already
known fact (see Proposition 5.5.4) about compactness of the closed convex enve-
lope of a compact set in a Banach space.

6.10.15. Theorem. Suppose that a set A in a Banach space X is compact in
the weak topology. Then the closed convex envelope of A (the intersection of all
closed convex sets containing A) is also compact in the weak topology (we recall
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that the closed convex envelope in the norm topology coincides with the closed
convex envelope in the weak topology, see Theorem 6.6.9).

PROOF. We apply Theorem 6.10.12, although there are other proofs. Let
V be the closed convex envelope of A with respect to the norm and let f ∈ X∗.
By the compactness of A there exists a point a ∈ A with f(a) = supx∈A f(x).
We observe that a ∈ V and supx∈V f(x) = supx∈A f(x), so the cited theorem
applies. �

The Eberlein–Shmulian theorem is very useful for establishing conditions for
the weak compactness and weak convergence in concrete spaces. Let us mention a
number of typical results, the proofs of which can be found in §4.7(iv) and §4.7(v)
in Chapter 4 of [73].

6.10.16. Theorem. Let µ be a finite measure on a measurable space (Ω,A)
and let F be some set of µ-integrable functions. Then the set F is uniformly
integrable precisely when it has compact closure in the weak topology of L1(µ).

6.10.17. Corollary. Suppose that {fn} is a uniformly integrable sequence
on a space with a finite measure µ. Then there exists a subsequence {fnk

} that
converges in the weak topology of L1(µ) to some function f ∈ L1(µ).

6.10.18. Corollary. Let µ be a bounded nonnegative measure and let M be
a norm bounded set in L1(µ). The closure of M in the weak topology is compact
precisely when for every sequence of µ-measurable sets An with An+1 ⊂ An and⋂∞
n=1An = ∅ one has

lim
n→∞

sup
f∈M

∫
An

|f | dµ = 0.

Let now (Ω,A) be a measurable space and let M(Ω,A) be the Banach space
of all real countably additive measures of bounded variation with its natural vari-
ation norm µ 7→ ‖µ‖.

6.10.19. Theorem. For every set M ⊂ M(Ω,A) the following conditions
are equivalent.

(i) The closure of M in the topology σ(M,M∗) is compact.
(ii) The setM is bounded in variation and there exists a nonnegative measure

ν ∈ M(Ω,A) (a probability measure if M 6= {0}) such that the family M is
uniformly ν-continuous, i.e., for every ε > 0 there exists δ > 0 with the property
that

|µ(A)| 6 ε for all µ ∈M whenever A ∈ A and ν(A) 6 δ.

In this case the measures from M are absolutely continuous with respect to ν, the
closure of the set {dµ/dν : µ ∈ M} is compact in the weak topology of L1(ν),
and for ν one can choose the measure

∑∞
n=1 cn|µn| for some finite or countable

collection {µn} ⊂M and numbers cn > 0.
(iii) Every sequence in M contains a subsequence converging on every set

from A.
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6.10.20. Corollary. A sequence of measures µn ∈M(Ω,A) converges in the
topology σ(M,M∗) if and only if it converges on every set from A. An equivalent
condition:

lim
n→∞

∫
Ω

f(ω)µn(dω) =
∫
X

f(ω)µ(dω) (6.10.2)

for every bounded A-measurable function f .

Let us consider an application to passage to the limit in the integral.

6.10.21. Corollary. Suppose that a sequence of measures µn ∈ M(Ω,A)
converges to a measure µ on every set from A and a sequence of A-measurable
functions fn is uniformly bounded and lim

n→∞
fn(ω) = f(ω) for every ω. Then

lim
n→∞

∫
Ω

fn(ω)µn(dω) =
∫
X

f(ω)µ(dω).

PROOF. By Theorem 6.10.19 there exists a probability measure ν on A such
that µn and µ are uniformly ν-continuous. Let |fn(ω)| 6 C, ‖µn‖ 6 C and
ε > 0. Let us find δ > 0 such that the bound ν(A) < δ yields that |µ|(A) < ε
and |µn|(A) < ε for all n. By the Egorov theorem there exists a set A with
ν(A) > 1 − δ on which convergence fn → f is uniform. Hence there is N ∈ IN
such that |fn(ω) − f(ω)| 6 ε if ω ∈ A and n > N . It remains to observe that∣∣∣∣∫

Ω

(fn − f) dµn

∣∣∣∣ 6
∫
A

|fn − f | d|µn| +
∫

Ω\A
|fn − f | d|µn| 6 Cε+ 2Cε

and that the integrals of f with respect to the measures µn converge to the integral
of f with respect to the measure µ. �

In the case where, for example, Ω = [0, 1] and A is the Borel σ-algebra,
the space M(Ω,A) coincides with the dual to C[0, 1] by the Riesz theorem, so
on M(Ω,A) there is also the weak-∗ topology. It should not be confused with
the weak topology σ(M,M∗). Convergence of measures µn to µ in the weak-∗
topology means the equality (6.10.2) for every continuous function f , while con-
vergence in the topology σ(M,M∗) is (6.10.2) for all bounded Borel functions f .
For example, the Dirac measures δ1/n at the points 1/n tend to the Dirac measure
δ0 at zero in the weak-∗ topology of the space of measures, but not in the weak
topology of the Banach space C[0, 1]∗. This circumstance becomes especially im-
portant, because in many applications (in particular, in probability theory and in
the theory of random processes) the weak-∗ topology of the space of measures is
traditionally called merely the weak topology (see, for example, [73, Chapter 8]).
Corollary 6.10.21 is false for the weak-∗ convergence of measure. It suffices to
take the measures δ1/n and the functions fn defined as follows: 0 6 fn 6 1,
fn(1/n) = 1, fn(t) = 0 if |t− 1/n| > 1/(2n).

Let us give several additional results and remarks in connection with the weak
and weak-∗ topologies.

6.10.22. Proposition. Let E be a normed space.
(i) The space E with the weak topology is metrizable precisely when E is

finite-dimensional.
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(ii) The unit ball UE of the space E with the weak topology is metrizable
precisely when E∗ is separable.

PROOF. (i) If the topology σ(E,E∗) is metrizable by a metric d and E is
infinite-dimensional, then the ball of radius n−1 centered at zero contains a weakly
open set, which is unbounded and hence contains vectors xn with ‖xn‖ > n. Then
d(xn, 0) → 0, but {xn} cannot converge weakly to zero being unbounded, which
is a contradiction.

(ii) If E∗ is separable, then one can take a countable everywhere dense set
{fn} in the unit ball of E∗. It is readily seen that the metric

d(x, y) :=
∑∞
n=1 2−n|fn(x− y)|

generates the weak topology on the ball UE . Conversely, suppose that the ball
UE is metrizable in the weak topology. Let us take a countable collection of
neighborhoods of zero Ufn,1,...,fn,kn

the intersections of which with the ball UE
give a basis of neighborhoods of zero in UE . Let us show that the linear span of
fn,i is dense in E∗. Let Y be the closure of this linear span. If f ∈ E∗\Y ,
then by the Hahn–Banach theorem there exists an element x∗∗ ∈ E∗∗ with
‖x∗∗‖ = 1, x∗∗|Y = 0 and x∗∗(f) = c > 0. The weak neighborhood of zero
V := {x ∈ UE : |f(x)| < c/2} in UE contains some set Ufn,1,...,fn,kn

∩ UE . By
Theorem 6.7.6 there is a vector x ∈ UE for which |x∗∗(f) − f(x)| < c/2 and
|x∗∗(fn,i) − fn,i(x)| < 1 for each i = 1, . . . , kn. Since x∗∗(fn,i) = 0, we have
|fn,i(x)| < 1, i.e., x ∈ Ufn,1,...,fn,kn

∩ UE . However, |f(x)| > c/2, because
x∗∗(f) = c. Therefore, x 6∈ V , which is a contradiction. �

The dual to an infinite-dimensional Banach space cannot be metrizable in the
weak-∗ topology, but the dual to an incomplete infinite-dimensional normed space
can be metrizable in the weak-∗ topology (see Exercise 6.10.148).

6.10.23. Theorem. Let X be a separable normed space. Then the closed unit
ball U∗ of the space X∗ with the weak-∗ topology is metrizable and compact. For
a metric generating the weak-∗ topology on the ball one can take

d(f, g) :=
∑∞
n=1 2−n|f(xn) − g(xn)|,

where {xn} is a sequence dense in the unit ball from X . In particular, U∗ contains
a countable set separating points of X .

PROOF. This assertion is a special case of the assertion from Exercise 1.9.68,
but it can be derived directly from the facts proved above. To this end we first
observe that from Theorem 6.7.1 one can easily deduce the compactness of the
ball in X∗ with the metric d (the fact that d is a metric is obvious). The identity
mapping from the ball with the metric d to the ball with the weak-∗ topology is
continuous, since convergence fn → f in the metric d on the ball yields the weak-
∗ convergence. Hence by Theorem 1.7.9 this mapping is a homeomorphism. Of
course, it is not difficult to verify directly the continuity of the identity mapping
from the weak-∗ topology to the metric. �

The next remarkable theorem due to Banach and Mazur establishes some
universality of the space C[0, 1] in the category of separable Banach spaces.



238 Chapter 6. Linear Operators and Functionals

6.10.24. Theorem. Every separable Banach space is linearly isometric to
some closed linear subspace in C[0, 1].

PROOF. In case of separable X the space K from the proof of Theorem 6.7.5
(the unit ball in X∗ with the weak-∗ topology) is a compact metric space, as shown
above. According to Exercise 1.9.67, the compact space K is homeomorphic to a
compact set in [0, 1]∞. Hence we can assume thatK ⊂ [0, 1]∞. Proposition 1.9.24
gives a continuous surjection π of the Cantor set in [0, 1], denoted here by K1,
onto [0, 1]∞. Let K0 := π−1(K). The mapping f 7→ f ◦π is a linear isometry of
the space C(K) to C(K0), since

sup
t∈K0

∣∣f(
π(t)

)∣∣ = sup
x∈[0,1]∞

|f(x)|.

It remains to embed C(K0) into C[0, 1] by a linear isometry. For this we ex-
tend every function from C(K0) to a continuous function on [0, 1] by a linear
interpolation on every interval constituting the complement of K0 in [0, 1]. �

Thus, separable normed spaces can be thought as linear subspaces in C[0, 1].

6.10.25. Remark. From the Banach–Steinhaus theorem we know that if a
sequence of continuous linear functionals fn on a Banach space X is such that for
every x ∈ X the sequence {fn(x)} converges, then there is an element f ∈ X∗ to
which {fn} converges in the weak-∗ topology. Thus, the space X∗ is sequentially
complete in the weak-∗ topology. One can ask an analogous question about the
weak topology in X . Suppose that a sequence of vectors xn ∈ X is such that for
every f ∈ X∗ the sequence {fn(x)} converges. Is it true that {xn} converges
weakly to some vector x ∈ X? Generally speaking, this is false. For example,
in the space c0 the sequence of vectors xn = (1, . . . , 1, 0, 0, . . .), where 1 is at
the first n positions, has no weak limit, but for every element f ∈ c∗0 = l1 the
sequence {f(xn)} converges. A space X in which convergence of {f(xn)} for
every f ∈ X∗ yields weak convergence of {xn} is called weakly sequentially
complete. It follows from what has been said at the beginning of this remark
that every reflexive Banach space is weakly sequentially complete, since its weak
topology can be identified with the weak-∗ topology of this space regarded as the
dual to its dual. For example, a Hilbert space is weakly sequentially complete.
There exist non-reflexive spaces with this property: for example, l1 and L1(µ).

Let us give without proof (which can be found in [75, Theorem 3.8.15] or
[533, Chapter IV, §6.4]) the following deep result due to Krein and Shmulian.

6.10.26. Theorem. Let X be a Banach space and let V ⊂ X∗ be a convex
set. If the intersection of V with every closed ball of radius n centered at zero is
closed in the topology σ(X∗, X), then V is also closed in the topology σ(X∗, X).

If X is separable, then for the closedness of V in the topology σ(X∗, X) is
suffices that V contain the limits of all its weak-∗ convergent sequences.

See Exercise 8.6.74 in Chapter 8 about some topology on X∗ connected with
this theorem.
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6.10.27. Corollary. Let X be a Banach space and let F be a linear function
on X∗. The following conditions are equivalent:

(i) the function F is continuous in the topology σ(X∗, X);
(ii) there exists x ∈ X with F (l) = l(x) for all l ∈ X∗;
(iii) the restriction of F to the unit ball UX∗ in X∗ is continuous in the

topology σ(X∗, X);
(iv) the set F−1(0) ∩ UX∗ is closed in the topology σ(X∗, X).
Finally, if X is separable, then this is also equivalent to the property that

lim
n→∞

F (ln) = 0 for every sequence {ln}⊂X∗ that is weak-∗ convergent to zero.

A Banach space X is called a space with the Dunford–Pettis property if con-
vergence xn → 0 in the weak topology of X and convergence ln → 0 in the topol-
ogy σ(X∗, X∗∗) in the space X∗ implies convergence ln(xn) → 0. For example,
an infinite-dimensional Hilbert space does not possess this property: it suffices
to take for xn = ln an orthonormal sequence. The space c0 has the Dunford–
Pettis property, since weak convergence in l1 = (c0)∗ yields convergence in norm
(Exercise 6.10.104). Let us give a less obvious example.

6.10.28. Example. The space C[0, 1] possesses the Dunford–Pettis property.

PROOF. Since C[0, 1]∗ is the space of bounded Borel measures on [0, 1], we
can apply Corollary 6.10.21. �

One more example of a space with the Dunford–Pettis property is L1[0, 1]
(Exercise 6.10.178).

One should bear in mind that although the weak topology of an infinite-
dimensional Banach space is always strictly weaker than its norm topology (Ex-
ample 6.6.3), it can happen that the supplies of convergent sequences in the
weak topology and the norm topology coincide. This is the case in l1 (Exer-
cise 6.10.104). The situation is different with the weak-∗ convergence, as the
following Josefson–Nissenzweig theorem shows (its proof can be found in Diestel
[148, Chapter XII]).

6.10.29. Theorem. If X is an infinite-dimensional Banach space , then there
exists a sequence of functionals fn ∈ X∗ with ‖fn‖ = 1 that is weak-∗ convergent
to zero. Moreover, every functional f ∈ X∗ with ‖f‖ 6 1 is the limit of some
sequence of elements fn ∈ X∗ of unit norm converging in the weak-∗ topology.

Let us mention a couple of interesting results connected with l1. Proofs and
references can be found in Albiac, Kalton [9]. The first result is due to H. Rosental.

6.10.30. Theorem. Let {xn} be a bounded sequence in an infinite-dimensio-
nal Banach space X . Then it contains either a weakly fundamental subsequence
or a subsequence {xnk

} such that the mapping T : l1 → X , (ξk) 7→
∑∞
k=1 ξkxnk

,
is a homeomorphism from l1 onto the closed subspace generated by {xnk

}.
The next result is due to E. Odell and H. Rosental.

6.10.31. Theorem. A separable Banach space X has no closed subspaces
isomorphic to l1 precisely when every element x∗∗ ∈ X∗∗ is the limit of some
sequence {xn} ⊂ X in the topology σ(X∗∗, X∗).
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All concrete infinite-dimensional Banach spaces we have encountered so far
possess the property that they contain subspaces isomorphic to some of the simplest
spaces lp with 1 6 p <∞ or c0. For a long time it was an open question whether
there exist infinite-dimensional spaces not containing lp and c0. Finally, in 1974
such example was constructed by a Soviet mathematician B. S. Tsirelson.

6.10(iii). The Banach–Saks property and uniform convexity

We shall say that a Banach space X possesses the Banach–Saks property if
every norm bounded sequence {xn} in X contains a subsequence {xnk

} such that
the sequence of arithmetic means

xn1 + · · · + xnk

k

converges in norm.
A normed space E with a norm ‖ · ‖ is called uniformly convex if for every

ε > 0 there exists δ > 0 such that

if ‖x‖ = 1, ‖y‖ = 1 and
∥∥∥x+ y

2

∥∥∥ > 1 − δ, then ‖x− y‖ 6 ε.

The spaces Lp(µ) with 1 < p <∞ are uniformly convex (for a proof, see §4.7(iii)
in [73]).

6.10.32. Theorem. All uniformly convex Banach spaces possess the Banach–
Saks property.

For a proof, see Diestel [147, Chapter 3, §7]. For example, the space Lp(µ)
with 1 < p <∞ possesses the Banach–Saks property. The validity of this property
for a Hilbert space can be easily verified directly.

6.10.33. Example. Hilbert spaces possess the Banach–Saks property.

PROOF. Passing to a subsequence we can assume that {xn} converges weakly
to some vector x. In addition, we can assume that x = 0. Set n1 = 1. Since
(xn1 , xn) → 0, there exists a number n2 > n1 with |(xn1 , xn2)| 6 1. If numbers
n1 < n2 < · · · < nk are already chosen, we find a number nk+1 > nk such that

|(xnj , xnk+1)| 6 k−1, j = 1, . . . , k.

This is obviously possible by weak convergence of {xn} to zero. We observe that
supn ‖xn‖ = M <∞. Hence

‖xn1 + · · · + xnk
‖2

k2
6
kM2 + 2 · 1 + · · · + 2(k − 1)(k − 1)−1

k2
6
M2 + 2

k
,

which shows norm convergence of the arithmetic means. �

The space L1[0, 1] does not have the Banach–Saks property, which is obvious
from consideration of the functions nI[0,1/n].

6.10.34. Theorem. Any space with the Banach–Saks property is reflexive.
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PROOF. We show that every continuous linear functional f on a space E with
the Banach–Saks property attains its maximum on the closed unit ball U . Let us
find un ∈ U such that f(un) → ‖f‖. Passing to a subsequence, we can assume
that the elements sn := (u1 + · · ·+ un)/n converge in norm to some u ∈ U . It is
clear that f(sn) → ‖f‖. Hence f(u) = ‖f‖. �

Any uniformly convex space X possesses the following property: if xn → x
weakly and ‖xn‖ → ‖x‖, then ‖x − xn‖ → 0. Indeed, we can assume that
‖xn‖ = ‖x‖ = 1. Then ‖xn + x‖/2 → 1, since if ‖x + xn‖/2 6 q < 1,
then |l(x + xn)/2| 6 q whenever ‖l‖ 6 1. Hence |l(x)| 6 q, which yields that
‖x‖ 6 q, a contradiction. However, the indicated property is weaker than the
uniform convexity. In this connection we mention the following theorem due to
Kadec and Klee (see Diestel [147, Chapter IV, §4]).

6.10.35. Theorem. Let X be a Banach space with the separable dual X∗.
Then X possesses an equivalent norm that is Fréchet differentiable outside the
origin and generates the norm ‖ · ‖∗ on X∗ with the following property: if fn → f
in the weak-∗ topology and ‖fn‖∗ → ‖f‖∗, then ‖fn − f‖∗ → 0.

The proof of the following interesting result can be read in Fabian, Ha-
bala, Hájek, Montesinos Santalucı́a, Pelant, Zizler [185, p. 259]; see also Exer-
cise 6.10.172 for the Hilbert case.

6.10.36. Theorem. Suppose that the norm of a Banach space X is Fréchet
differentiable outside the origin. Then every bounded closed convex set in X is
some intersection of closed balls. In particular, this is true for Hilbert spaces.

6.10(iv). Bases, approximations and complements

As we have seen above, the most important attribute of Hilbert spaces are
orthogonal bases. Many Banach space possess topological bases.

6.10.37. Definition. Let X be a separable Banach space. A sequence {hn}
in X is called a Schauder basis or a topological basis if for every x ∈ X there is
a unique sequence of numbers {cn(x)} such that x =

∑∞
n=1 cn(x)hn, where the

series converges in norm.

It is clear that a Schauder basis is a linearly independent set. Note that in an
infinite-dimensional Banach space a topological basis cannot be an algebraic basis
(a Hamel basis), since the latter is always uncountable.

By the uniqueness of expansions the functionals ln : x 7→ cn(x) are linear. It
turns out that they are automatically continuous! Note that li(hj) = δij also by
the uniqueness of expansions.

6.10.38. Proposition. All functionals li are continuous. Hence the finite-
dimensional mappings Pn : x 7→

∑n
i=1 li(x)hi are continuous. In addition, the

norm ‖x‖∞ := supn ‖Pnx‖ is equivalent to the original norm.

PROOF. Since ‖Pnx‖ → ‖x‖, we have ‖x‖ 6 ‖x‖∞. Let us show that X is
complete with the norm ‖ · ‖∞. Then by the Banach inverse mapping theorem
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we obtain the equivalence of both norms. This will give the boundedness of all
mappings Pn with respect to the original norm and the estimate supn ‖Pn‖ <∞.
This yields the continuity of all ln, since Pnx− Pn−1x = ln(x)hn. Suppose that
a sequence {xj} is Cauchy with respect to the new norm. Then it is Cauchy with
respect to the original norm and hence converges in it to some x ∈ X . We have
to show that ‖x− xj‖∞ → 0. We observe that for every fixed n the sequence of
vectors Pnxj is also Cauchy with respect to the new norm and hence converges
in the original norm to some vector yn ∈ X . The whole sequence {Pnxj} is
contained in the finite-dimensional space Xn generated by h1, . . . , hn. On finite-
dimensional subspaces the functionals li are continuous, so for every i = 1, . . . , n
there exists a limit

li(yn) = lim
j→∞

li(Pnxj) = lim
j→∞

li(xj) =: ci,

independent of n by the second equality. Let us verify the equality x =
∑∞
i=1 cihi

with respect to the original norm. For a given number ε > 0 we find n such that
‖xn − xm‖∞ 6 ε for all m > n. Let us take k0 such that ‖xn − Pkxn‖ 6 ε for
all k > k0. For such k we have

‖yk − x‖ = lim
m→∞

‖Pkxm − xm‖

6 lim sup
m→∞

[
‖Pkxm − Pkxn‖ + ‖Pkxn − xn‖ + ‖xn − xm‖

]
6 lim sup

m→∞

[
‖xm − xn‖∞ + ε+ ‖xn − xm‖∞

]
6 3ε.

Hence ‖yk − x‖ → 0. By the uniqueness of expansions we have the equality
yk = Pkx. Therefore,

‖xn − x‖∞ = sup
k>1

‖Pkxn − Pkx‖ 6 lim sup
m→∞

sup
k>1

‖Pkxn − Pkxm‖

= lim sup
m→∞

‖xn − xm‖∞ → 0

as n→∞. Thus, X is complete with the new norm. �

With respect to the new norm ‖ · ‖∞ the projections Pn have unit norms
(which is not always true for the original norm).

Schauder bases were constructed in many concrete Banach spaces. For exam-
ple, the Haar functions χn defined by the formulas χ1(t) = 1,

χ2k+l(t) =


1 if t ∈ [(2l − 2)2−k−1, (2l − 1)2−k−1],
−1 if t ∈

(
(2l − 1)2−k−1, (2l)2−k−1],

0 else,

where k = 0, 1, 2, . . . and l = 1, 2, . . . , 2k, form a Schauder basis in Lp[0, 1] if
1 6 p <∞. The Faber–Schauder functions

ϕ0(t) = 1, ϕn(t) =
∫ t

0

χn(s) ds, n > 1,
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form a Schauder basis in C[0, 1] (these functions were introduced in 1910 by
H. Faber, who discovered that they form a basis). The function ϕ0 = 1 is con-
stant, the function ϕ1(t) = t is linear, and the subsequent functions ϕn have
graphs that are equilateral triangles of height 1 and bases of the form [2−k, 21−k],
vanishing outside these bases. The partial sum with number n of the expansion
of f with respect to the functions ϕi is the result of the linear interpolation be-
tween the values of f at the points 0, 21−n, 22−n, . . . , 1 for n > 1. For example,
we have S0f(t) = c0ϕ0(t), where c0 = f(0), S1f(t) = c0ϕ0(t) + c1ϕ1(t),
where c1 = f(1) − f(0), next, S2f(t) = c0ϕ0(t) + c1ϕ1(t) + c2ϕ2, where
c2 = f(1/2) − f(0)/2 − f(1)/2 and so on. From this one can readily derive
the uniform convergence of Snf to f .

In some spaces the attempts to construct a basis failed for a long time. For
example, in 1974 S.V. Bochkarev solved the problem posed by Banach and con-
structed a Schauder basis in the space of functions analytic in the unit disc and
continuous on the closed disc (equipped with the sup-norm). The problem of ex-
istence of a Schauder basis in every separable Banach space remained open for
several decades. This was one of the most famous problems in the theory of
Banach spaces. Finally, in 1973 a Swedish mathematician P. Enflo published his
celebrated counterexample. Simultaneously he solved negatively another very dif-
ficult old problem about the existence of a separable Banach spaces without the
approximation property.

A Banach space X is said to possesses the approximation property if for
every compact set K ⊂ X and every ε > 0 there exists a continuous finite-
dimensional operator T such that ‖x − Tx‖ < ε for all x ∈ K. It is known
that this is equivalent to the property that, for every Banach space Z, the set
of finite-dimensional operators is dense with respect to the operator norm in the
space K(Z,X) of compact operators. If X has a Schauder basis {hn}, then
the projections x 7→

∑n
i=1 xihi converge to the identity operator uniformly on

compact sets, hence X has the approximation property. However, there exist
spaces with the approximation property, but without Schauder bases. It is now
known that spaces without the approximation property (hence without Schauder
bases) exist even among closed subspaces of c0 and lp with p > 2 (they certainly
also exist among closed subspaces of the universal space C[0, 1]).

If a linearly independent sequence {hn} is a Schauder basis of the closure
of its linear span, then it is called a basic sequence. This is equivalent to the
property that for some C > 0 for all n < m and all scalars α1, . . . , αm we
have

∥∥∑n
i=1 αihi

∥∥ 6 C
∥∥∑m

i=1 αihi
∥∥. Indeed, if {hn} is a Schauder basis of the

closure Y of its linear span, then the indicated estimate with C = 1 is true for the
equivalent norm ‖ · ‖∞. Conversely, suppose that this estimate holds. Then, for
any convergent series

∑∞
i=1 αihi with the zero sum it follows that all αi are zero.

If this series converges to some x, then we set xi := αi. It remains to observe
that the set of all vectors x representable in this form is a closed subspace. This is
easily seen from the estimate

∥∥∑n
i=1 αihi

∥∥ 6 C‖x‖ following from our condition
as m→∞. Hence this closed subspace is Y .
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Basic sequences exist in all spaces. The next fact was already known in
Banach’s time.

6.10.39. Theorem. In every infinite-dimensional Banach space there is an
infinite basic sequence.

PROOF. We employ the following fact: let Y be a finite-dimensional subspace
of an infinite-dimensional Banach space X . Then for every ε > 0 there exists a
vector h ∈ X with ‖h‖ = 1 such that ‖y‖ 6 (1 + ε)‖y + λh‖ for all y ∈ Y
and λ ∈ IR1. Since we have y/λ ∈ Y , this inequality can be restated as follows:
‖y‖ 6 (1 + ε)‖y + h‖ for all y ∈ Y , or, equivalently, (1 + ε)‖y + h‖ > 1 for
all vectors y ∈ Y of unit norm. For the proof we assume that ε ∈ (0, 1) and
y1, . . . , ym is an (ε/2)-net in the unit sphere of Y . Pick functionals fi ∈ X∗ with
‖fi‖ = 1 and fi(yi) = 1. Since X is infinite-dimensional, there is a vector h of
unit norm such that fi(h) = 0 for each i. Let y ∈ Y and ‖y‖ = 1. There is yi
with ‖y − yi‖ < ε/2. Then for every number λ we have

‖y + λh‖ > ‖yi + λh‖ − ε

2
> fi(yi + λh) − ε

2
= 1 − ε

2
> (1 + ε)−1,

as required.
We now take ε > 0 and numbers εn > 0 such that

∏∞
n=1(1 + εn) < 1 + ε.

Let ‖h1‖ = 1. By induction we obtain vectors hn with

‖y‖ 6 (1 + εn)‖y + λhn+1‖

for all y from the linear span of h1, . . . , hn and all λ ∈ IR1. It is readily seen that
{hn} is a basic sequence and ‖Pn‖ < 1 + ε for all n. �

Not every linearly independent sequence with a dense linear span in a Banach
space is a Schauder basis.

6.10.40. Example. The functions 1, sinnt, cosnt do not form a Schauder
basis in the space C2π of 2π-periodic functions, which is clear from the existence
of a function in C2π with the Fourier series divergent at zero. The functions
xn(t) = tn do not form a Schauder basis in C[0, 1] and L2[0, 1]. For the proof we
observe that the expansion x =

∑∞
n=1 cn(x)xn in C[0, 1] or in L2[0, 1] ensures the

real analyticity of the function x on [0, 1), since we have convergence of the series
of the integrals, i.e., the series

∑∞
n=1 cn(x)(n + 1)−1, which yields convergence

of the power series
∑∞
n=1 cn(x)tn if |t| < 1.

Nevertheless, one can construct a Schauder basis in C[0, 1] consisting of poly-
nomials. As was shown by H. Faber back in 1914, in C[0, 1] there is no Schauder
basis consisting of polynomials hn of degree n. In 1990 A.A. Privalov proved
that if polynomials hn form a Schauder basis in C[0, 1], then for some ε > 0
and for all sufficiently large n one has deg hn > (1 + ε)n. In addition, for every
ε > 0 there is a Schauder basis {hn} with deg hn 6 (1 + ε)n. It was shown by
M.A. Skopina in 2001 that such polynomials can be chosen even orthogonal (for
references, see Odinets, Yakubson [461]).

The next result due to Krein–Milman–Rutman shows some stability of bases.
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6.10.41. Proposition. Let {un} be a Schauder basis in a Banach space X ,
‖un‖ = 1 and supn ‖Pn‖ = K, where Pn is the projection on the linear span
of u1, . . . , un. If a sequence {vn} ⊂ X is such that

∑∞
n=1 ‖un − vn‖ < (2K)−1,

then {vn} is also a Schauder basis.

PROOF. For any x =
∑∞
n=1 xnun, let us set Tx =

∑∞
n=1 xnvn. Since

|xn| = ‖Pnx − Pn−1x‖ 6 2K‖x‖, the series converges by convergence of the
series of xnun and xn(vn − un), moreover,

‖x− Tx‖ 6
∞∑
n=1

|xn| ‖un − vn‖ 6 q‖x‖, q = 2K
∞∑
n=1

‖un − vn‖ < 1.

Hence ‖I − T‖ < 1. So T is invertible (see Theorem 7.1.3), whence our assertion
follows. �

6.10.42. Corollary. If a Banach space has a Schauder basis, then such a
basis can be picked in every everywhere dense set.

In some problems the lack of a Schauder basis is compensated by biorthogonal
systems and Markushevich bases.

6.10.43. Definition. Let X be a nonzero Banach space. A pair of sequences
{xn} ⊂ X and {ln} ⊂ X∗ is called biorthogonal if li(xj) = δij .

If, in addition, the linear span of {xn} is dense in X and the functionals ln
separate points in X , then {xn} is called a Markushevich basis in X .

Note that if the pair of sequences {xn} ⊂ X and {ln} ⊂ X∗ is biorthogonal,
then the sequence {xn} is minimal in the following sense: no element xn belongs
to the closure of the linear span of the remaining elements xk, k 6= n (otherwise
we obtain ln(xn) = 0). For X = 0 zero is a basis.

The next result was obtained by A. I. Markushevich.

6.10.44. Theorem. Every separable Banach space has a Markushevich basis.
Moreover, such a basis can be found in every dense linear subspace.

PROOF. Let us embed the given space X as a closed subspace in C[0, 1] and
take a linearly independent sequence {yn} whose linear span is dense in X . Let
{xn} be the result of othogonalization of {yn} in L2[0, 1]. Set ln(x) = (x, xn)L2 ,
x ∈ X . If ln(x) = 0 for some x ∈ X for all n, then the element x is orthogonal to
the closed linear span of {xn} in L2[0, 1] and hence is orthogonal to X in L2[0, 1].
Therefore, (x, x)L2 = 0. Thus, x = 0. �

A simple example of a Markushevich basis that is not a Schauder basis is the
system of functions exp(int), n ∈ Z, in the complex space C[0, 2π] of continuous
functions with x(0) = x(2π) equipped with the sup-norm. In the general case it
can happen that supn ‖xn‖ ‖ln‖ = ∞. However, it is known that for every ε > 0
one can find a Markushevich basis with supn ‖xn‖ ‖ln‖ 6 1 + ε. The question
whether this is true for ε = 0 remains open.

In finite-dimensional spaces there are biorthogonal systems (Auerbach sys-
tems) with the following property.
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6.10.45. Proposition. In a Banach space X of finite dimension n one can
find vectors x1, . . . , xn and linear functionals l1, . . . , ln such that ‖xi‖ = ‖li‖ = 1
and li(xj) = δij .

PROOF. We can assume that X = IRn with some norm. Let B be the
closed unit ball in this norm. For every collection of vectors y1, . . . , yn ∈ B
we denote by V (y1, . . . , yn) the determinant of the matrix (yi, yj)i,j6n, where
yi = (yi,1, . . . , yi,n). The function V attains its maximum on B at some col-
lection of vectors x1, . . . , xn ∈ B. It is clear that ‖x1‖ = · · · = ‖xn‖ = 1.
Set

li(x) := V (x1, x2, . . . , xi−1, x, xi+1, . . . , xn)/V (x1, . . . , xn).

Then li(xi) = 1, |li(x)| 6 1 for all x ∈ B, i.e., ‖li‖ = 1. Finally, li(xj) = 0 if
i 6= j, since V (y1, . . . , yn) = 0 if there are two equal vectors among yi. �

Yet another important geometric property in Banach spaces is connected with
the existence of bounded projections. We shall say that a closed subspace E of a
Banach space X is complemented in X if there exists a closed subspace D ⊂ X
such thatX = E⊕D. This gives a bounded operator P : X → E with P (X) = E
and Px = x for all x ∈ E, i.e., a bounded projection onto E. Conversely, the
existence of such projection gives a complement to E in the formD = P−1(0). As
we know, in a Hilbert space every closed subspace has the orthogonal complement
and hence is complemented. It turns out that there are no other spaces with such
a property: J. Lindenstrauss and L. Zafriri proved that if in a Banach space X
every closed subspace is complemented, then X is linearly homeomorphic to a
Hilbert space. Let us give an interesting concrete example of a subspace that is
not complemented.

6.10.46. Example. The space C[0, 1] has a closed subspace E linearly iso-
metric to L2[0, 1]. This subspace is not complemented.

PROOF. We know that C[0, 1] possesses the Dunford–Pettis property (Exam-
ple 6.10.28), but E does not. Let us show that if E were complemented, then
it would also have the Dunford–Pettis property. Let P be a bounded projection
onto E. If xn → 0 in the weak topology of E, then the same is true also for
the weak topology of C[0, 1]. Let ln ∈ E∗ be such that ln → 0 in the topology
σ(E∗, E∗∗). Set fn = ln ◦P . Then fn ∈ C[0, 1]∗. Let F ∈ C[0, 1]∗∗. Set
G(l) := F (l ◦P ), l ∈ E∗∗. Clearly, G ∈ E∗∗. Then F (fn) = G(ln) → 0
by our assumption. Therefore, fn(xn) → 0, i.e., ln(xn) → 0, which gives the
Dunford–Pettis property in E. Thus, we have obtained a contradiction. �

The space c0 also has no complement in l∞ (Exercise 6.10.117).
Let us prove an interesting result due to A. Sobszyk on extensions of pointwise

converging sequences of functionals.

6.10.47. Proposition. Let X be a separable normed space, let Y ⊂ X be a
linear subspace, and let {fn} ⊂ Y ∗ be such that lim

n→∞
fn(y) = 0 for all y ∈ Y
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and ‖fn‖ 6 1. Then there exist functionals f̃n ∈ X∗ with f̃n|Y = fn, ‖f̃n‖ 6 2
and lim

n→∞
f̃n(x) = 0 for all x ∈ X .

PROOF. Let {xi} be a countable everywhere dense set in the unit ball of X
with {xi} ∩ Y = ∅. It suffices to construct extensions with norms at most 2
pointwise converging to zero on every vector xi.

This can be easily done if we prove the following fact: for every fixed k and
every ε > 0 there exists N(k, ε) such that for all n > N(k, ε) the functionals fn
have extensions gn ∈ X∗ such that ‖gn‖6 2 and |gn(xi)|6 ε, i = 1, . . . , k. Let
L denote the linear span of Y and x1, . . . , xk. If the aforementioned fact is false,
then {fn} contains a subsequence {fnj} for which all fnj have no extensions with
the indicated properties. We can assume that this is the whole original sequence.
We know that fn has an extension ϕn ∈ X∗ with ‖ϕn‖ 6 1. The sequence
of vectors

(
gn(x1), . . . , gn(xk)

)
∈ IRk is bounded and hence has a convergent

subsequence. Again we can assume that the whole sequence converges. Then the
limit l(x) := lim

n→∞
gn(x) exists for all x ∈ L. It is clear that l is a linear functional

on L and ‖l‖ 6 1. In addition, l|Y = 0. We extend l to a functional l0 ∈ X∗

with ‖l0‖ 6 1. Set ψn := fn − l0. Then ψn|Y = fn, ‖ψn‖ 6 2 and for all
sufficiently large n we have |ψn(xi)| 6 ε, i = 1, . . . , k, which contradicts our
supposition and completes the proof. �

This result can be restated as follows.

6.10.48. Corollary. Let X be a separable normed space, let Y ⊂ X be a
linear subspace, and let T : Y → c0 be a continuous operator. Then T extends to
an operator S : X → c0 such that ‖S‖ 6 2‖T‖.

Therefore, c0 is complemented in every separable Banach space isometrically
containing it.

The separability is important here: as we have already noted, c0 is not com-
plemented in l∞ (Exercise 6.10.117). Up to an isomorphism c0 is the unique
separable Banach space that is complemented in every separable Banach space
into which it is embedded as a closed subspace (this result is due to M. Zippin,
see [293]).

6.10(v). Operators on ordered vector spaces

In the theory of ordered vector spaces, briefly touched upon in §5.6(iii), an
important role is played by positive functionals and operators. Let E be an ordered
vector space. We say that a linear functional f on E is positive (and write f > 0)
if f(x) > 0 whenever x > 0. This is equivalent to the property that f(x) 6 f(y)
whenever x 6 y. Similarly one defines positive operators between ordered spaces.

For positive functionals there are some analogs of the Hahn–Banach theorem.

6.10.49. Theorem. Let p be a positively homogeneous convex functional on
an ordered vector space E. If on a linear subspace E0 ⊂ E we are given a linear
functional f satisfying the condition

f(x) 6 p(x+ z) for all x ∈ E0 and all z > 0, (6.10.3)
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then f extends to a linear functional on all of E satisfying the indicated condition
for all x ∈ E.

PROOF. Set q(x) = inf{p(x+ z) : z > 0}, x ∈ E. Since

0 = f(0) 6 p(0 + z) = p(z) if z > 0,

for any z > 0 we have p(x+z)+p(−x) > p(z) > 0, i.e., q(x) 6 −p(−x) > −∞.
It is readily seen that q(λx) = λq(x) for all x ∈ E, λ > 0. The inequality
q(x + y) 6 q(x) + q(y) follows from the fact that for every ε > 0 there exist
z1, z2 > 0 such that q(x) > p(x+ z1) − ε and q(y) > p(y + z2) − ε. Indeed, the
latter gives

q(x)+q(y) > p(x+z1)+p(y+z2)−2ε > p(x+y+z1+z2)−2ε > q(x+y)−2ε,

since z1 + z2 > 0. By assumption f 6 q on E0. It remains to apply the usual
Hahn–Banach theorem to f and q. �

6.10.50. Corollary. Condition (6.10.3) is necessary and sufficient for the
existence of a linear extension f̃ of the function f to E such that f̃ > 0 and f̃ 6 p
on E. In particular, a linear functional f on a linear subspace E0 has a positive
linear extension to E precisely when there exists a positively homogeneous convex
function p satisfying condition (6.10.3).

PROOF. If this condition is fulfilled, then the extension constructed in the
theorem is nonnegative, since for all z > 0 we have

−f̃(z) = f̃(−z) 6 p(−z) = 0.

Conversely, if such an extension f̃ exists, then we have

f(x) = f̃(x) 6 f̃(x) + f̃(z) = f̃(x+ z) 6 p(x+ z) for all x ∈ E0 and z > 0,

i.e., (6.10.3) is fulfilled. Finally, if f extends to a positive linear functional f̃
on E, then (6.10.3) is fulfilled with p = f̃ . �

Let us consider some simple examples of positive linear functionals without
positive extensions.

6.10.51. Example. (i) Let E be the space of all bounded real functions on
the real line with its natural partial order and let E0 be the linear span of indicator
functions of bounded intervals. The functional f on E0 defined as the Riemann
integral is linear and positive. If it had an extension to a positive linear functional
f̃ on E, then we would have α := f̃(1) ∈ IR1. Since IJ 6 1 for every interval J ,
we obtain f̃(1− IJ) > 0, whence f̃(IJ) 6 α, which is impossible if the length of
J is greater than α.

(ii) Let E = IR∞ be the space of all real sequences with the partial order
defined by the coordinate-wise comparison and let E = c be the subspace of all
sequences with a finite limit. Then the functional f(x) := lim

n→∞
xn has no positive

linear extensions to E. Indeed, if such an extension f̃ exists, then the element
x with xn = n is mapped to some number α ∈ [0,+∞). Let us take a natural
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number k > α and an element y with yn = k for all n > k and yj = 0 if j < k.
Then k = f̃(y) 6 f̃(x) = α, which is a contradiction.

Let us give two positive results.

6.10.52. Corollary. Let f be a positive linear functional on a linear subspace
E0 ⊂ E. Suppose that for every x ∈ E there exists y ∈ E0 such that x 6 y. Then
f extends to a positive linear functional on E. In particular, this is true if there is
a point in the algebraic kernel of the positive cone of E contained in E0.

PROOF. Set U := {x ∈ E0 : f(x) < 1} and

W := {w ∈ E : w 6 u for some u ∈ U}.
We observe that the set W is convex and 0 ∈ W . In addition, for every x ∈ E
there exists ε > 0 such that εx ∈ W . Indeed, by condition there exists y ∈ E0

with x 6 y. One can take ε > 0 such that f(εy) < 1. Then εx ∈ W . Let
us take for p the Minkowski functional of the set W . It follows from what has
been said above that p is a positively homogeneous convex function. Let us verify
condition (6.10.3). If it fails, then there exist elements x ∈ E0 and z > 0 such that
f(x) > 1 and p(x + z) < 1. Then for some λ∈ (0, 1) we have (x + z)/λ ∈ W ,
i.e., (x + z)/λ 6 u, where u ∈ U . Hence x + z 6 λu for some x 6 λu.
Hence f(x) 6 λf(u) < 1, which is a contradiction. Applying Theorem 6.10.49
we complete the proof of the first assertion. If the positive cone has a nonempty
algebraic kernel intersecting E0, then we take a point z0 ∈ E0 in this kernel. Then
for every x ∈ E there exists α > 0 with z0 − αx > 0, i.e., x 6 z0/α ∈ E0. �

6.10.53. Corollary. Let z0 belong to the algebraic kernel of the positive
cone K. Then the existence of a positive linear functional f with f(z0) = 1 is
equivalent to the condition −z0 6∈ K.

PROOF. Let −z0 6∈ K. On the one-dimensional space generated by z0 we
define f by the formula f(λz0) = λ. If λz0 ∈ K, then by condition we have
λ > 0 and hence f(λz0) > 0. Now we can apply the previous corollary. If
f exists, then in case −z0 ∈ K we would obtain f(−z0) > 0, i.e., f(z0) 6 0
contrary to the equality f(z0) = 1. �

Note that if an ordered vector space E is equipped with a norm (or a topology
making it a topological vector space) and the positive cone has inner points in
the corresponding topology, then every positive linear functional is automatically
continuous, being bounded from below on an nonempty open set.

6.10.54. Example. On the spaces L∞(µ) and Cb(T ), where T is a topological
space, all positive linear functionals are continuous.

A simple example of a discontinuous positive linear functional on an ordered
normed space is the function f(ϕ) = ϕ(0) on the space of all polynomials on [0, 1]
(or on the space of all continuous functions) equipped with the norm from L2[0, 1].

However, the existence of inner points in the positive cone is not necessary
for the automatic continuity of all positive linear functionals on a given ordered
normed space. For the definition of a Banach lattice, see §5.6(iii).
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6.10.55. Proposition. Every positive linear functional f on a Banach lattice
E is automatically continuous. In addition,

‖f‖ = sup{|f(x)| : x > 0, ‖x‖ = 1}.
In particular, this is true for Lp(µ), 1 6 p 6 ∞. Here, in the case, for example, of
Lebesgue measure µ the positive cone in Lp(µ) with p <∞ has no inner points.

A similar assertion is true for positive operators on E with values in a normed
lattice.

PROOF. Let f be a discontinuous positive functional. Then there exists a
sequence of elements xn ∈ E such that ‖xn‖ 6 2−n and f(xn) > n. We
can assume that xn > 0, since we have |f(x)| 6 |f(|x|)|. Let x =

∑∞
n=1 xn.

Then f(x) > f(xn) > n for all n, which is impossible. The assertion about
‖f‖ follows from the estimate |f(x)| 6 |f(|x|)|. The case of a positive operator
is completely analogous. If the measure µ is not concentrated at finitely many
atoms, for example, is Lebesgue measure on an interval, then every neighborhood
of every function from Lp(µ) with p < ∞ contains a function that is strictly
negative on a set of a nonzero measure. Hence the positive cone has no inner
points. �

It follows from this proposition that a positive functional ϕ 7→ ϕ(0) on the
linear subspace of continuous functions in the space L2[0, 1] has no positive ex-
tensions to L2[0, 1].

Let us mention the Kantorovich theorem on extensions of positive operators,
a particular case of which is Corollary 6.10.52 (for a proof, see, e.g., [14, p. 29]).

6.10.56. Theorem. Let X be an ordered vector space with a positive cone K,
let X0 ⊂ X be a linear subspace such that X0 +K = X , and let Y be a complete
vector lattice. Then every positive linear operator T : X0 → Y extends to a
positive linear operator on all of X .

6.10.57. Proposition. Let E be an ordered vector space, let f be a linear
functional on E, and let p be a positively homogeneous convex functional. Suppose
also that on a linear subspace E0 ⊂ E we are given a linear functional g. Then
the following conditions are equivalent:

(i) there is a linear extension g̃ of the functional g to E such that

f(z) 6 g̃(z) for all z > 0 and g̃(x) 6 p(x) for all x ∈ E; (6.10.4)

(ii) there is a linear extension g̃ of the functional g to E such that

g̃(x) + f(z) 6 p(x+ z) for all z > 0 and x ∈ E; (6.10.5)

(iii) the functional g satisfies the condition

g(y) + f(z) 6 p(y + z) for all z > 0 and y ∈ E0. (6.10.6)

PROOF. Condition (i) implies (ii), because we have

p(x+ z) > g̃(x+ z) = g̃(x) + g̃(z) > g̃(x) + f(z).

Condition (ii) implies (iii). Let (iii) be fulfilled. Set p1(x) := p(x) − f(x)
if x ∈ E and g1(y) := g(y) − f(y) if y ∈ E0. Then by (6.10.5) we obtain
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g1(y) 6 p1(y + z) if y ∈ E0, z > 0. By Theorem 6.10.49 there is a linear
extension g̃1 of the functional g1 to E with g̃1(x) 6 p1(x + z) for all x ∈ E,
z > 0. Set g̃ := g̃1 + f . Then g̃1 is a linear extension of g. For all z > 0 and
x ∈ E we have g̃(x) + f(z) = g̃1(x) + f(x) + f(z) 6 p(x+ z). For x = −z we
obtain f(z) 6 g(z) and for z = 0 we have g̃(x) 6 p(x). �

6.10.58. Corollary. Let E be an ordered vector space, let f be a linear
functional on E, and let p be a positively homogeneous convex functional. Then
a necessary and sufficient condition for the existence of a linear functional g
on E such that g(x) 6 p(x) for x ∈ E and f(z) 6 g(z) for all z > 0 is this:
f(z) 6 p(z) for all vectors z > 0.

PROOF. The necessity is clear. For the proof of sufficiency we take E0 = {0}
with g = 0 on E0. Then condition (6.10.6) is fulfilled, so g extends linearly to E
such that (6.10.4) is fulfilled. �

We now turn to ordered normed spaces. Suppose that an ordered vector space
E is equipped with a norm ‖ · ‖ such that for some c > 0 we have

‖x‖ 6 c‖z‖ whenever 0 6 x 6 z. (6.10.7)

Then the positive cone is called normal. For example, in the Banach spaces B(Ω)
and Lp(µ) (more generally, in all Banach lattices) this condition is fulfilled, but
in the space C1[0, 1] of continuously differentiable functions with its natural norm
and the pointwise partial order this condition fails. First we note the following fact
which can be easily derived from Theorem 6.10.49.

6.10.59. Proposition. If E0 is a Banach sublattice of a Banach lattice E,
then every positive functional on E0 extends to a positive functional on E with the
same norm.

Let us discuss decompositions of functionals in differences of positive func-
tionals.

6.10.60. Proposition. Let E be an ordered normed space with a normal posi-
tive cone satisfying condition (6.10.7). Then for every continuous linear functional
f there exist positive continuous functionals f1 and f2 such that

f = f1 − f2, ‖f1‖ 6 c‖f‖, ‖f2‖ 6 (1 + c)‖f‖.
Conversely, if this is true for every f ∈ E∗, then the positive cone is normal and
(6.10.7) holds with 2(1 + c) in place of c.

PROOF. Let ‖f‖ = 1, U := {x ∈ E : ‖x‖ < 1/c}, W := U − K, where
K = {z ∈ E : z > 0}. It is readily seen thatW is an open convex set and 0 ∈W .
For all z ∈ K ∩W we have ‖z‖ 6 1, since 0 6 z = u − z1, where ‖u‖ < 1/c
and z1 > 0, whence 0 6 z 6 u. By (6.10.7) this gives ‖z‖ 6 c‖u‖ 6 1. Denote
by p the Minkowski functional of the set W . We observe that

f(z) 6 p(z) and p(−z) < −1 for all z ∈ K.

Indeed, setting a := p(z), for each ε > 0 we have p
(
z/(a + ε)

)
< 1, hence

(a+ ε)−1z ∈W ∩K. Then ‖z/(a + ε)‖ < 1 as shown above. Hence we have
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f(z) 6 ‖z‖ 6 a. Next, −z 6 0 ∈ U , whence −z ∈ W and hence p(−z) < 1.
The previous corollary gives a linear functional g 6 p such that f(z) 6 g(z) for
all z ∈ K. The functional g is positive, since for all z ∈ K and λ > 0 we have
g(−λz) 6 p(−λz) < 1, whence g(z) > −1/λ. Finally, if ‖x‖ < 1, we obtain
x/c ∈ U ⊂ W , which gives g(x/c) 6 p(x/c) 6 1. Thus, ‖g‖ 6 c. Now we can
let f1 := g, f2 := g − f .

Suppose now that for every f ∈ E∗ there exist positive functionals f1 and f2
with f = f1 − f2 and ‖f1‖ 6 (1 + c)‖f‖, ‖f2‖ 6 (1 + c)‖f‖. Let 0 6 x 6 z.
A corollary of the Hahn–Banach theorem gives f ∈ E∗ with f(x) = ‖x‖ and
‖f‖ = 1 (we can assume that x 6= 0). Taking f1 and f2 as above, we obtain
0 6 fi(x) 6 fi(z) 6 (1 + c)‖z‖. Hence ‖x‖ = f(x) = f1(x) − f2(x) does not
exceed 2(1 + c)‖z‖. �

The following result about decompositions of functionals in differences of
positive functionals gives a bit more than Proposition 6.10.60.

6.10.61. Theorem. Let F be a vector lattice of bounded functions on a set Ω
containing 1. Suppose that on F we are given a linear functional L continuous
with respect to the norm ‖f‖ = sup

Ω
|f(x)|. Then L can be represented in the form

L = L+ − L−, where L+ > 0, L− > 0 and for all nonnegative f ∈ F we have

L+(f) = sup
06g6f

L(g), L−(f) = − inf
06g6f

L(g). (6.10.8)

In addition, letting |L| := L+ + L−, for all f > 0 we have

|L|(f) = sup
06|g|6f

|L(g)|, ‖L‖ = L+(1) + L−(1).

A similar assertion with the exception of the equality is true for all continuous
linear functionals on normed vector lattices.

PROOF. For nonnegative functions f, g ∈ F and every function h ∈ F such
that 0 6 h 6 f + g we can write h = h1 + h2, where h1, h2 ∈ F , 0 6 h1 6 f ,
0 6 h2 6 g. Indeed, let h1 = min(f, h), h2 = h − h1. Then h1, h2 ∈ F ,
0 6 h1 6 f and h2 > 0. Finally, h2 6 g. Indeed, if h1(x) = h(x), then
h2(x) = 0 if h1(x) = f(x), then h2(x) = h(x) − f(x) 6 g(x), since h 6 g + f .

Let L+ be defined by equality (6.10.8). We observe that the quantity L+(f)
is finite, since |L(h)| 6 ‖L‖ ‖h‖ 6 ‖L‖ ‖f‖. It is clear that L+(tf) = tL+(f)
for all nonnegative numbers t and f > 0. Let f > 0 and g > 0 belong to F .
Using the notation above, we obtain

L+(f + g) = sup{L(h) : 0 6 h 6 f + g}
= sup{L(h1) + L(h2) : 0 6 h1 6 f, 0 6 h2 6 g} = L+(f) + L+(g).

Now for all f ∈ F we set L+(f) = L+(f+) − L+(f−), where f+ = max(f, 0),
f− = −min(f, 0). Note that if f = f1 − f2, where f1, f2 > 0, then we have
L+(f) = L+(f1) − L+(f2). Indeed, obviously f1 + f− = f2 + f+ and hence
L+(f1) +L+(f−) = L+(f2) +L+(f+). It is clear that L+(tf) = tL+(f) for all
t ∈ IR1 and f ∈ F . The additivity of the functional L+ follows from its additivity
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on nonnegative functions. Indeed, for any f and g we have f = f+ − f− and
g = g+ − g−, whence f + g = (f+ + g+)− (f− + g−) and according to what has
been said above we obtain

L+(f + g) = L+(f+ + g+) − L+(f− + g−) = L+(f) + L+(g).

By definition, L+(f) > L(f) for nonnegative f , so the functional L− := L+ −L
is nonnegative. It is readily seen that L− is given by the announced formula.

Finally, ‖L‖ 6 ‖L+‖ + ‖L−‖ = L+(1) + L−(1). On the other hand,

L+(1) + L−(1) = 2L+(1) − L(1) = sup{L(2ϕ− 1) : 0 6 ϕ 6 1}
6 sup{L(h) : −1 6 h 6 1} 6 ‖L‖.

The theorem is proved for the lattice F . The case of a general vector lattice is
similar, see [14, p. 14]. �

Let us mention a remarkable result due to P. P. Korovkin on convergence of
positive operators (for a proof, see [339, Chapter 1]).

6.10.62. Theorem. Let Tn be positive linear operators on C[0, 1] in the sense
that Tnx > 0 if x > 0 such that for the three functions xk(t) = tk, k = 0, 1, 2, we
have ‖Tnxk − xk‖ → 0 as n→∞. Then ‖Tnx− x‖ → 0 for every x ∈ C[0, 1].

The same assertion is true for the space C2π of continuous 2π-periodic func-
tions if x1(t) = 1, x2(t) = sin t and x2(t) = cos t.

6.10(vi). Vector integration

Here we briefly discuss the Lebesgue integral for vector mappings, which
is called in this case the Bochner integral (see [147], [149], [164], [171], [397],
and [614]). Let (Ω,B) be a measurable space and let µ be a nonnegative measure
on B. First we suppose that the measure µ is bounded and then indicate the
necessary changes for the general case.

Let E be a real or complex Banach space. Let B(E) denote the σ-algebra
generated by open sets in E. This σ-algebra is called Borel.

6.10.63. Definition. A mapping f : Ω → E that is defined µ-almost every-
where is called µ-measurable if, for every B ∈ B(E), the set f−1(B) is µ-
measurable.

It is clear that if f is a µ-measurable mapping with values in a Banach
space E, then the function ω 7→ ‖f(ω)‖ is also µ-measurable by the Borel mea-
surability of open balls in E.

6.10.64. Proposition. Let E be a separable Banach space and let f : Ω→E
be a mapping defined µ-almost everywhere. This mapping is µ-measurable pre-
cisely when for every l ∈ E∗ the scalar function l◦f is µ-measurable.

A sufficient condition for the µ-measurability of f is the µ-measurability of
all functions ln◦f , where {ln} ⊂ E∗ is a countable set such that every element
in E∗ is the limit of a subsequence from {ln} in the weak-∗ topology (such a set
exists by the separability of E, see below).
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PROOF. Let us consider the real case. The necessity of the indicated condi-
tion is clear from the fact that for every l ∈ E∗ and every open set V ⊂ IR the
set f−1

(
l−1(V )

)
is µ-measurable, because l−1(V ) is open. Let us show that the

σ-algebra B0 generated by the halfspaces of the form {x : l(x) 6 r} coincides
with B(E). By the separability of the space E every open set in it equals the
union of a countable collection of open balls with centers at points from {xn}. Let
U be such a ball. We show that U ∈ B0. Since U is the union of a sequence of
closed balls with the same centers, we can pass to the closed ball U . It remains
to represent it as the intersection of a countable collection of closed halfspaces.
To this end, for every point xn ∈ E\U and every closed ball B(xn, rk) of ra-
tional radius rk disjoint with U we find a halfspace Πn,k such that U ⊂ Πn and
B(xn, rk) ⊂ E\Πn,k. We have U =

⋂
n,k Πn,k. Indeed, if x 6∈ U , then there exist

xn and rk such that x ∈ B(xn, rk) and U ∩ B(xn, rk) = ∅, whence x 6∈ Πn,k.
Thus, U ∈ B0, which gives the equality B0 = B(E).

Let {ln} ⊂ E∗ be a countable set such that every element l in E∗ is the limit
of a subsequence in {ln} in the weak-∗ topology. The existence of such a set is
obvious from the fact that E∗ is the union of closed balls of radius n each of which
is a metrizable compact space in the weak-∗ topology (see Theorem 6.10.23). Then
the function l is measurable with respect to the σ-algebra generated by {ln}. Since
the function ln is measurable with respect to B0, so is the function l. �

Note that the measurability of f is equivalent to the measurability of the
functions gn ◦f , where {gn} ⊂ E∗ is a countable set separating points in E,
since for {ln} we can take the set of finite linear combinations of gi with rational
coefficients (the intersection of this set with the ball in E∗ is dense in this ball in
the weak-∗ topology, which is easily verified).

For a broad class of measure spaces (in particular, for intervals with Borel
measures) every measurable mapping with values in a Banach space automatically
takes values in a separable subspace after redefinition on a set of measure zero
(see Corollary 6.10.16 and Theorem 7.14.25 in [73]).

As in the case of scalar functions, µ-measurable vector valued mappings with
finite sets of values will be called simple. For a such mapping ψ with values
y1, . . . , yn on disjoint sets Ω1, . . . ,Ωn, the Bochner integral is defined by∫

Ω

ψ(ω)µ(dω) :=
n∑
i=1

yiµ(Ωi).

By the additivity of µ this integral is well-defined, i.e., does not depend on the
partition of Ω into disjoint parts on which ψ is constant.

A sequence of simple mappings ψn is called Cauchy or fundamental in mean
if for every ε > 0 there is N such that∫

Ω

‖ψn(ω) − ψk(ω)‖µ(dω) < ε if n, k > N .

The sequence of integrals of ψn is Cauchy in E. Indeed, let Ω1, . . . ,ΩN be
disjoint measurable sets picked for fixed n and k such that ψn and ψk are constant
on them. Such sets can be easily obtained by refining the sets on which ψn and
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ψk are constant. Then we have the estimate which proves our claim:∥∥∥∥∫
Ω

[ψn(ω) − ψk(ω)]µ(dω)
∥∥∥∥ 6

N∑
i=1

‖yni − yki ‖µ(Ωi)

=
∫

Ω

‖ψn(ω) − ψk(ω)‖µ(dω).

6.10.65. Definition. Let E be a Banach space. A mapping f : Ω → E is
called Bochner integrable if there exists a sequence of simple E-valued mappings
ψn that converges to f µ-almost everywhere and is Cauchy in mean. The Bochner
integral of f is defined as the limit of the integrals of ψn and denoted by the

symbol
∫

Ω

f(ω)µ(dω).

It follows from the scalar case that this definition is not ambiguous, since
for every l ∈ E∗ the sequence of functions l◦ψn converges almost everywhere
and is Cauchy in mean. Any integrable mapping f is measurable with respect
to µ. Indeed, it follows from the definition that there exists a separable subspace
X0 ⊂ X such that f(ω) ∈ X0 for µ-a.e. ω. Now the measurability of f follows
from the proposition proved above and the measurability of the limit of a sequence
of scalar measurable functions.

6.10.66. Example. Every bounded measurable mapping f with values in a
separable Banach space E is Bochner integrable.

PROOF. Let us fix n ∈ IN. Let {xi} be a countable everywhere dense set
in E. The space E is covered by the sequence of balls Bi,n := B(xi, 2−n). Let
us find Nn such that

µ
(

Ω\
⋃Nn

i=1 f
−1(Bi,n)

)
< 2−n.

Set Ωn,1 := f−1(B1,n),Ωn,k := f−1(Bk,n)\Ωn,k−1, k 6 Nn. We define sim-
ple mappings ψn as follows. Let ψn = xk on Ωn,k and let ψn = 0 outside
Ωn :=

⋃Nn

k=1 Ωn,k. For every ω ∈ Ωn,k we have ‖ψn(ω) − f(ω)‖ 6 2−n.
Hence this estimate is fulfilled on a set Ωn with µ(Ω\Ωn) < 2−n. Therefore,
lim
n→∞

ψn(ω) = f(ω) for µ-almost all ω. This is true for every ω from the set

Ω′ :=
⋂∞
m=1

⋃∞
n=m Ωn of full µ-measure. By hypothesis ‖f(ω)‖ 6 M for

some M . Then ‖ψn(ω)‖ 6 M + 1. For all n > k and ω ∈ Ωn ∩ Ωk we have
‖ψn(ω) − ψk(ω)‖ 6 21−k, whence it follows that {ψn} is Cauchy in mean. �

The estimate above implies that the function ‖f(ω)‖ is µ-integrable and∥∥∥∥∫
Ω

f(ω)µ(dω)
∥∥∥∥ 6

∫
Ω

‖f(ω)‖µ(dω)

for any µ-integrable mapping f . The converse is also true.

6.10.67. Theorem. Let f be a µ-measurable mapping with values in a sep-
arable Banach space E such that the function ω 7→ ‖f(ω)‖ is integrable with
respect to µ. Then the mapping f is Bochner µ-integrable.
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PROOF. For every n ∈ IN we find a measurable set Ωn with µ(Ω\Ωn) < 2−n

and ∫
Ω\Ωn

‖f(ω)‖µ(dω) < 2−n.

Slightly decreasing the set Ωn with the preservation of these bounds, we find
simple mappings ψn for which ‖ψn(ω) − f(ω)‖ 6 2−n for all ω ∈ Ωn and
‖ψn(ω)‖ 6 ‖f(ω)‖ + 1 for almost all ω. This is clear from the proof of the
previous example. As above, we obtain convergence of the sequence {ψn} to f
almost everywhere and its fundamentality in mean. �

It follows from the definition that for every Bochner integrable mapping f
with values in a Banach space E and every continuous linear operator T from E
to a Banach space Y the mapping T ◦f is also Bochner integrable and∫

Ω

T
(
f(ω)

)
µ(dω) = T

(∫
Ω

f(ω)µ(dω)
)
.

Similarly to the scalar case the following assertion can be proved (Exer-
cise 7.10.98).

6.10.68. Theorem. The class L1(µ;E) of all Bochner µ-integrable every-
where defined mappings with values in a Banach space E is a linear space and
the Bochner integral is linear on it. The set of µ-equivalence classes L1(µ;E)
with the norm

‖f‖L1(µ;E) :=
∫

Ω

‖f(ω)‖µ(dω),

given by means of a representative of the equivalence class is a Banach space. In
addition, for every p ∈ [1,+∞) the subspace Lp(µ;E) in L1(µ;E) corresponding
to mappings with a finite norm

‖f‖Lp(µ;E) :=
(∫

Ω

‖f(ω)‖p µ(dω)
)1/p

is also a Banach space.

Similarly to the scalar case one can include in L1(µ;E) mappings that are
not defined on a measure zero set and coincide outside a measure zero set with
a mapping from the previously defined class. For the same reasons as for real
functions, this set will not be a linear space, although one can take sums of such
mappings and multiply them by constants (on a set of full measure). This is a
matter of convenience, but the difference disappears after passage to the factor-
space L1(µ;E).

In case of an infinite measure the construction of the Bochner integral is
similar, but in the definition of a simple mapping it is required in addition that it
must be zero outside a set of finite measure.

In applications it is often useful to work with weaker notions of the scalar
integrability or the Pettis integrability.

A mapping f with values in a Banach space E is called scalarly integrable
if for every l ∈ E∗ the function l◦f is integrable with respect to µ and there is
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an element h ∈ E, called the scalar integral of f , such that the integral of the
function l◦f equals l(h). If f is scalarly integrable on every measurable set, then
it is called Pettis integrable and its scalar integral is called the Pettis integral of f .

If E is separable, then the scalar integrability implies the measurability of f ,
but in the general case it does not yield the Bochner integrability. For example,
let the measure µ on l2 be concentrated at the points of the form nen and −nen,
where {en} is the standard basis in l2, and let the measure of such point be n−2.
The mapping f(x) = x has zero Pettis integral, since for every y = (yn) ∈ l2

the series with the general term ynn
−1 is absolutely convergent. However, the

function ‖x‖ is not integrable with respect to µ due to divergence of the series
with the general term n−1.

6.10(vii). The Daniell integral

The construction of the Lebesgue integral presented in this book is based on a
preliminary study of measure. It is possible, however, to act in the opposite order:
to define measure by means of integral. At the basis of this approach there is the
following result due to Daniell. Its formulation employs the notion of a vector
lattice of functions, i.e., a linear space F of real functions on a nonempty set Ω
such that max(f, g) ∈ F for all f, g ∈ F (this is equivalent to the closedness of
F with respect to taking absolute values). Vector lattices of functions considered
here are a particular case of abstract vector lattices mentioned in §5.6(iii). Suppose
that on F we are given a nonnegative linear functional L, i.e., L(f) > 0 for all
f > 0, and that L(fn) → 0 for every sequence {fn} ⊂ F pointwise decreasing
to zero. Such a functional is called the Daniell integral. Our nearest goal is to
extend L to a larger domain of definition L such that the extension will possess
the main properties of the integral, i.e., admit analogs of monotone and dominated
convergence theorems and L will be complete. An example which can be taken as
model is an extension of the Riemann integral from the set of step or continuous
functions. Then we clarify the connections between the Daniell integral and the
true integral with respect to a measure.

6.10.69. Definition. A set S ⊂ Ω will be called L-zero if there exists a non-
decreasing sequence of nonnegative functions fn ∈ F for which sup

n
L(fn)<∞

and sup
n
fn(x) = +∞ on S.

This definition is inspired by the monotone convergence theorem.

6.10.70. Lemma. (i) The union of countably many L-zero sets Sk is an L-zero
set.

(ii) A set S is L-zero precisely when for every ε > 0 there exists a nondecreas-
ing sequence of nonnegative functions fn ∈ F with L(fn) < ε and sup

n
fn(x) > 1

on S.
(iii) If f ∈ F and f > 0 outside an L-zero set, then L(f) > 0. If f, g ∈ F

and f 6 g outside an L-zero set, then L(f) 6 L(g).



258 Chapter 6. Linear Operators and Functionals

PROOF. (i) For any fixed k we take functions fk,n ∈ F , n ∈ IN, such that
L(fk,n) 6 2−k and sup

n
fk,n(x) = ∞ on Sk. Let gn = f1,n + · · · + fn,n. Then

gn ∈ F , L(gn) 6 1 and sup
n
gn(x) = +∞ on

⋃∞
k=1 Sk, since the latter is true on

every Sk.
(ii) If S is L-zero and {fn} ⊂ F is an increasing sequence with the properties

indicated in the definition and L(fn) 6 M , then, for any given ε > 0, we take the
function εM−1fn. Conversely, if the condition in (i) is fulfilled, then for every
k there exists an increasing sequence {fk,n} ⊂ F such that L(fk,n) 6 2−k for
all n and supn fk,n > k on S. Let gn = f1,1 + · · · + fn,n. Then gn ∈ F ,
0 6 gn 6 gn+1, L(gn) 6 1, and supn gn = +∞ on S. Hence S is L-zero.

(iii) Let S = {f < 0} and c = L(f) < 0. Let us take an increasing sequence
of nonnegative functions fn ∈ F with L(fn) 6 |c|/2 and supn fn(x) = ∞ for
all x ∈ S. Then the sequence of functions f + fn is increasing and its finite or
infinite limit is everywhere nonnegative, since the function f is finite on S and
nonnegative outside S. In addition, L(f + fn) 6 −|c|/2. Set ϕn = (f + fn)−.
Then ϕn ∈ F and the functions ϕn are pointwise increasing to zero. Hence
L(ϕn) → 0 contrary to that L(ϕn) 6 L(f + fn) 6 −|c|/2. Thus, c = 0. �

This yields the following stronger continuity property of L.

6.10.71. Corollary. Let {fn} ⊂ F and fn ↓ 0 outside some L-zero set S.
Then L(fn) ↓ 0.

PROOF. Set gn = min(f1, . . . , fn). Then gn ∈ F . Outside S we have
gn = fn. By the lemma L(fn) = L(gn). In addition, {gn} is everywhere
decreasing. If L(gn) > c > 0 for all n, then we take an increasing sequence of
nonnegative functions ϕn ∈ F with L(ϕn) < c/2 and supn ϕn(x) = ∞ for all
x ∈ S. Then the functions gn − ϕn ∈ F decrease everywhere to a nonpositive
limit, because outside S the functions gn decrease to zero and on S we have
gn − ϕn 6 g1 − ϕn → −∞. The functions (gn − ϕn)+ ∈ F pointwise decrease
to zero, whence we obtain L

(
(gn − ϕn)+

)
→ 0. This contradicts the estimate

L
(
(gn − ϕn)+

)
> L(gn − ϕn) > c/2. �

Denote by L↑ the class of all functions f : Ω → (−∞,+∞] for which there
exists a sequence of nonnegative functions fn ∈ F such that outside some L-zero
set we have f(x) = lim

n→∞
fn(x) and fn(x) 6 fn+1(x) for all n and the sequence

{L(fn)} is bounded. Set

L(f) := lim
n→∞

L(fn).

The limit exists, since by assertion (iii) of the lemma above the sequence {L(fn)}
increases. The next lemma shows that L is well-defined on L↑.

6.10.72. Lemma. (i) Suppose that {fn} and {gn} are two sequences from F
such that outside some L-zero set S they increase and satisfy the condition

lim
n→∞

fn(x) 6 lim
n→∞

gn(x),
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where also infinite limits are allowed. Then we have lim
n→∞

L(fn) 6 lim
n→∞

L(gn).

In particular, these limits coincide if outside S the sequences {fn} and {gn}
increase to a common limit.

(ii) Every function from L↑ is finite outside some L-zero set.

PROOF. (i) For any fixed n the functions fn − gk outside S decrease to a
nonpositive limit. Hence (fn − gk)+ ↓ 0 outside S, which by the corollary above
gives L

(
(fn − gk)+

)
↓ 0. Hence lim

k→∞
L(fn − gk) 6 0, i.e., L(fn) 6 lim

k→∞
L(gk),

which gives the desired inequality.
(ii) Suppose that functions fn ∈ F increase to f outside an L-zero set S and

L(fn) 6 C. Set gn = max(f1, . . . , fn). Then gn ∈ F , gn 6 gn+1, and gn = fn
outside S. The set Z = {x : supn gn(x) = ∞} is L-zero by definition. The
function f is finite outside the set S ∪ Z. �

It follows from the established facts that if f ∈ L↑ and a function g > 0 equals
f on the complement of an L-zero set, then g ∈ L↑ and L(g) = L(f). Hence
every function from L↑ can be made everywhere finite without changing L(f).

Let L denote the set of all real functions f representable as the difference
f = f1 − f2 of two everywhere finite functions f1, f2 ∈ L↑. For such functions
we set L(f) := L(f1)−L(f2). This value is well-defined, which is verified in the
next theorem.

On L we can introduce an equivalence relation by declaring to be equivalent
those functions which coincide outside an L-zero set. Then the set L̃ of equiva-
lence classes becomes a metric space with the metric dL(f, g) := L(|f − g|). In
addition, L̃ is a linear space and L is naturally defined on L̃. It is clear that F is
everywhere dense in L̃.

6.10.73. Theorem. (i) The functional L on L (or L̃) is well-defined and
linear.

(ii) If f ∈ L, then |f | ∈ L and |L(f)| 6 L(|f |).
(iii) The assertions of the monotone convergence, Lebesgue dominated conver-

gence and Fatou theorems hold for L with L in place of the integral: if fn ∈ L,
fn → f outside an L-zero set and either there is a function Φ ∈ L such that
|fn| 6 Φ outside an L-zero set or {fn} is increasing outside an L-zero set
and supn L(fn) < ∞, then f ∈ L and lim

n→∞
L(fn) = L(f); if fn > 0 and

supn L(fn) <∞, then f ∈ L and L(fn) 6 lim infn L(fn).
In addition, the space L̃ is complete with respect to the metric dL.

PROOF. (i) It is readily seen that f + g ∈ L↑ for all f, g ∈ L↑, moreover,
L(f + g) = L(f) + L(g). If f1, f2, g1, g2 ∈ L↑ and f1 − f2 = g1 − g2, then
L(f1) + L(g2) = L(g1) + L(f2), which shows that L is well-defined on L. Since
L(αf) = αL(g) for all f ∈ L↑ and all α > 0, then this is true for all f ∈ L and
α ∈ IR. If f, g ∈ L and f = f1 − f2, g = g1 − g2, where f1, f2, g1, g2 ∈ L↑,
then by the facts already proved above we have f + g = f1 + g1 − (f2 + g2) ∈ L
and L(f + g) = L(f1 + g1) − L(f2 + g2) = L(f) + L(g).
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The closedness of F with respect to the operations (ϕ,ψ) 7→ min(ϕ,ψ) and
(ϕ,ψ) 7→ max(ϕ,ψ) yields the closedness of L↑ with respect to these operations.
Hence min(f1, f2) ∈ L↑ and max(f1, f2) ∈ L↑, whence

|f | = |f1 − f2| = max(f1, f2) − min(f1, f2) ∈ L.
Finally, for the proof of the estimate |L(f)| 6 L(|f |) it suffices to verify that
Lϕ > 0 if ϕ ∈ L and ϕ > 0. Then ϕ = ψ1 − ψ2, where ψ1, ψ2 ∈ L↑ and
ψ2 6 ψ1. Hence we can apply assertion (i) of the lemma above.

(ii) Let {fn} ⊂ L be increasing outside an L-zero set and let the sequence
{L(fn)} be bounded. For every n we find functions fn,k ∈ F increasing to
fn outside some L-zero set Sn. Let gn = maxk,m6n fm,k. Then gn ∈ F , the
sequence {gn} is increasing and {L(gn)} is bounded. Hence f = lim

n→∞
gn ∈ L+

and L(f) = lim
n→∞

L(gn). It is clear that fn(x) → f(x) outside an L-zero set and

L(f) = lim
n→∞

L(fn), since L(gn) 6 L(fn) and L(fn) = lim
k→∞

L(fn,k). Fatou’s

theorem is deduced precisely as in the case of the Lebesgue integral.
Let fn(x) → f(x) and |fn(x)|6Φ(x) outside an L-zero set, where fn,Φ∈L.

Set ϕn(x) := infk>n fk(x), ψn(x) := supk>n fk(x). Then outside an L-zero set
we have ϕn 6 fn 6 ψn, ϕn > −Φ, ψn 6 Φ, ϕn ↑ f , ψn ↓ f . Hence f ∈ L and
L(f) = lim

n→∞
L(ϕn) = lim

n→∞
L(ψn), which gives L(f) = lim

n→∞
L(fn).

Let now a sequence {fn} ⊂ L be Cauchy in the metric dL. Passing to a
subsequence, we can assume that dL(fn, fn+1) 6 2−n. As shown above, the
series of |fn − fn−1|, where f0 := 0, converges outside some L-zero set S to an
element Φ ∈ L. Then the sums fn =

∑n
k=1(fk − fk−1) converge to a finite limit

f outside S. Since |fn| 6 Φ, we conclude that {fn} converges to f in L̃. �

The Daniell integral possesses the most important properties of the Lebesgue
integral, so the question arises whether it can be defined as the integral with
respect to some countably additive measure. Moreover, some measure arises au-
tomatically. Indeed, denote by RL the class of all sets E ∈ Ω for which IE ∈ L
and let ν(E) := L(IE). It follows from the previous theorem that RL is a δ-ring
and that the measure ν on it is countably additive. However, in the general case
the integral with respect to this measure can fail to coincide with L. As the fol-
lowing example shows, without additional assumptions it is not always possible to
represent L as the Lebesgue integral with respect to a countably additive measure.

6.10.74. Example. Let F be the set of all finite real functions f on [0, 1] with
the following property: for some number α = α(f), the set

{
t : f(t) 6= α(1 + t)

}
is a first category set. Let L(f) := α. Then F is a vector lattice of functions with
the natural order relation from IR[0,1], L is a nonnegative linear functional on F
and L(fn) → 0 for every sequence of functions fn ∈ F pointwise decreasing to
zero, but even on the subspace of all bounded functions in F the functional L
cannot be defined as the integral with respect to a countably additive measure.

PROOF. We observe that for every function f ∈ F there is only one number
α with the indicated property, since the interval is not a first category set. Hence
the function L is well-defined. For any f ∈ F let Ef :=

{
t : f(t) 6= α(1 + t)

}
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for the number α corresponding to f . If f, g ∈ F and α = α(f), β = α(g)
are the corresponding numbers, then the set Ef ∪ Eg has the first category and
outside this set we have f(t) + g(t) = (α+ β)(1 + t). For every scalar c we have
cf(t) = cα(1 + t) outside the set Ef . Thus, F is a linear space. It is readily seen
that |f | ∈ F for all f ∈ F . It is clear from what has been said that the function L
is linear. For all f > 0 we have L(f) > 0. If functions fn ∈ F pointwise decrease
to zero, then the union of the sets Efn

is a first category set. Hence there exists a
point t such that L(fn) = fn(t)/(1+t) for all n at once, whence lim

n→∞
L(fn) = 0.

Suppose now that there exists a measure µ on σ(F) with values in [0,+∞]
such that every bounded function f from F belongs to L1(µ) and L(f) coincides
with the integral of f with respect to the measure µ. The function ψ : t 7→ 1 + t
belongs to F , whence it follows that all open sets from [0, 1] belong to σ(F).
By the estimate ψ > 1 we obtain µ([0, 1]) 6 L(ψ) = 1. Thus, the restriction
of µ to B([0, 1]) is a finite measure. Hence there exists a Borel first category set
E such that µ([0, 1]\E) = 0. Indeed, we can take the union of nowhere dense
compact sets Kn with µ([0, 1]\Kn) < 1/n, which are constructed by means of
deleting sufficiently small intervals with centers at the points of an everywhere
dense countable set of µ-measure zero. Let us consider the following function f :
f(t) = 0 if t ∈ E, f(t) = 1 + t if t 6∈ E. It is clear that f ∈F and L(f) = 1.
On the other hand, the integral of f with respect to the measure µ is zero, which
gives a contradiction. �

In this example the measure ν generated by L on the δ-ring RL is identically
zero. Indeed, here L-zero sets are first category sets, since if α(fn) 6 1/3, then
fn(t) 6 2/3 outside a first category set. Hence the class L coincides with F . The
indicator function of a set can belong to F only for α = 0, i.e., RL consists of
first category sets and they are zero sets.

One should bear in mind that the measure ν can be zero also in the case where
L is given as the integral with respect to some nonzero measure µ. For example, let
us take for F the one-dimensional linear space generated by the function f(t) = t
on (0, 1) and for L take the Riemann integral, i.e., L(αf) = α/2. Then RL

consists of the empty set and ν = 0.
We now prove that adding one simply stated condition, fulfilled in all applica-

tions, leads to the effect that the Daniell integral is given by the Lebesgue integral
with respect to some measure. This is the so-called Stone condition:

min(f, 1) ∈ F for all f ∈ F .

This condition is trivially fulfilled if the lattice of functions F contains 1. A non-
trivial example of a lattice with the Stone condition, but without 1, is the space of
continuous functions with compact support on IRn. The space F from the previous
example and its subspace consisting of bounded functions obviously do not satisfy
the Stone condition.

6.10.75. Theorem. Let F satisfy the Stone condition and let L be a nonneg-
ative linear functional on F such that L(fn) → 0 for every sequence of functions
fn ∈ F pointwise decreasing to zero. Then there exists a countably additive
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measure µ on σ(F) with values in [0,+∞] such that F ⊂ L1(µ) and

L(f) =
∫

Ω

f(ω)µ(dω), f ∈ F . (6.10.9)

In addition, L̃ = L1(µ) and such a measure µ is unique on the σ-ring generated
by the sets of the form {f > c}, where f ∈ F and c > 0. Finally, if 1 ∈ F , then
the measure µ is finite.

PROOF. The measure ν constructed above on the δ-ring RL uniquely ex-
tends to a countably additive measure µ (with values in [0,+∞]) on the σ-ring
Rσ
L generated by RL. In addition, it extends (but not necessarily uniquely) to a

countably additive measure µ on the σ-algebra generated by RL. Let us show
that the latter coincides with the σ-algebra σ(L) generated by L. To this end we
observe that one can easily derive from the Stone condition that min(f, 1) ∈ L
for all f ∈ L. This gives the inclusion Ec := f−1(c,+∞) ∈ RL for all c > 0
and f ∈ L. Indeed, it suffices to verify this for c = 1. Then the functions
ϕn := min

(
1, nf − nmin(1, f)

)
∈ L increase pointwise to IE1 , 0 6 ϕn 6 1

and ϕn 6 |f |, whence E(ϕn) 6 L(|f |). Therefore, f−1
(
(α, β]

)
∈ RL whenever

0 < α < β and f ∈ L. It follows from this that all functions from L are measur-
able with respect to the σ-algebra generated by RL. Let f ∈ L and 0 6 f 6 1.
Set fk :=

∑2k−1
n=1 n2−kI(n2−k,(n+1)2−k]. Then fk ∈ L, fk → f and fk 6 f .

Hence ∫
Ω

fk dµ = L(fk) → L(f).

Therefore, the function f is integrable with respect to µ and its integral is L(f).
Now for every nonnegative function f ∈ L we obtain min(f, n) ∈ L1(µ) and the
integral of min(f, n) equals L

(
min(f, n)

)
, which gives the µ-integrability of f

and the equality of its integral to L(f) by the monotone convergence theorem for
the integral and for L. Then this equality remains true for all f ∈ L. Clearly,
σ(F) ⊂ σ(L) and F ⊂ L. The uniqueness of a representing measure on the
σ-ring generated by the sets of the form {f > c}, where f ∈ F and c > 0, is clear
from the proof. Finally, if 1 ∈ F , then µ(Ω) = L(1) <∞. �

On σ(F) the measure µ is not always unique. For example, if F is the space
of all finite Lebesgue integrable functions f on [0,+∞) with f(0) = 0 and L is the
Lebesgue integral, then for µ we take any measure λ + cδ0, where λ is Lebesgue
measure, δ0 is Dirac’s measure at zero and c > 0.

Typical applications of the Daniell–Stone method are connected with exten-
sions of functionals on spaces of continuous functions.

6.10.76. Theorem. (THE RIESZ THEOREM) Let K be a compact space and
let L be a linear functional on C(K) such that L(f) > 0 if f > 0. Then on the
σ-algebra generated by all continuous functions on K there exists a nonnegative
finite measure µ such that

L(f) =
∫
K

f(x)µ(dx), f ∈ C(K).
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PROOF. By assumption we have |L(f)| 6 L(1) maxx |f(x)|. It remains to
observe that if functions fn ∈ C(K) decrease pointwise to zero, then by Dini’s
theorem maxx |fn(x)| → 0 and hence L(fn) → 0. �

Note that the measure µ uniquely extends to a measure on the Borel σ-
algebra of B(K) (in case of nonmetrizable K the latter can be larger than the
σ-algebra Ba(K) generated by C(K)) with the following regularity property:
µ(B) = sup{µ(C) : C ⊂ B is compact} for all Borel sets B ⊂ K. A proof
can be found in [73, Chapter 7]. If K is metrizable, then B(K) = Ba(K).

A more general example (with a possibly infinite measure) is obtained if we
consider a positive functional on the space C0(T ) of all continuous functions with
compact support on a locally compact space T . For example, in this way we can
extend the Riemann integral to the Lebesgue integral on IRn or on a manifold. By
the way, it is clear from this why in the definition of the integral on L↑ we used
L-zero sets: if we take only pointwise limits of continuous functions, then not
every Lebesgue integrable function will be equal almost everywhere to a function
from the obtained class. Finally, we observe that if 1 ∈ F , then representation
(6.10.9) takes place without the assumption that L is nonnegative. For this the
functional L satisfying the condition L(fn) → 0 as fn ↓ 0 can be decomposed
into the difference of two nonnegative functionals satisfying the same condition
(see Theorem 6.10.61 and [73, §7.8]).

6.10(viii). Interpolation theorems

Here we prove the M. Riesz and Thorin interpolation theorem, which is one
of the most important results in the theory of interpolation of linear operators. Let
µ and ν be nonnegative measures on measurable spaces (Ω1,A1) and (Ω2,A2).

6.10.77. Theorem. Let p0, q0, p1, q1 ∈ [1,+∞], where p0 6= p1 and q0 6= q1.
Suppose we are given a linear mapping

T : Lp0(µ) ∩ Lp1(µ) → Lq0(ν) ∩ Lq1(ν),

where we consider complex spaces, such that

‖Tf‖Lq0 (ν) 6 M0‖f‖Lp0 (µ) and ‖Tf‖Lq1 (ν) 6 M1‖f‖Lp1 (µ).

Then T extends to an operator between the spaces Lp(µ) and Lq(ν) with the norm
M 6 M1−θ

0 Mθ
1 provided that 0 < θ < 1 and

1
p

=
1 − θ

p0
+

θ

p1
,

1
q

=
1 − θ

q0
+

θ

q1
.

PROOF. It is clear that T extends to an operator from Lp0(µ) to Lq0(ν)
and from Lp1(µ) to Lq1(ν) with norms not exceeding M0 and M1. The point
(p−1, q−1) belongs to the interval joining the points (p−1

0 , q−1
0 ) and (p−1

1 , q−1
1 ) in

the plane. This explains the term “interpolation”. If the measure µ is finite and
p0 < p1, then p−1 is between p−1

1 and p−1
0 and hence Lp(µ) is between Lp1(µ)

and Lp0(µ), i.e., T can be restricted from Lp0(µ) to Lp(µ). However, it is not
obvious at all that Lp(µ) will take values in Lq(ν). We observe that 1 < p < ∞
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and 1 < q < ∞. Hence out further considerations can be conducted for simple
integrable functions. Whenever 0 6 Re z 6 1, let

1
p(z)

=
1 − z

p0
+

z

p1
,

1
q′(z)

=
1 − z

q′0
+

z

q′1
,

ϕ(z) = |f |p/p(z)f/|f |, ψ(z) = |g|q
′/q′(z)g/|g|,

where f and g are simple integrable functions on Ω1 and Ω2, respectively, and
‖f‖Lp(µ) = ‖g‖Lq′ (ν) = 1. Then the function

F (z) =
∫

Ω2

Tϕ(z)ψ(z) dν

is analytic in the open strip 0 < Re z < 1 and continuous and bounded in its
closure. Straightforward calculations show that

‖ϕ(it)‖Lp0 (µ) = ‖ϕ(1 + it)‖Lp1 (µ) = ‖ψ(it)‖
Lq′0 (ν)

= ‖ψ(1 + it)‖
Lq′1 (ν)

= 1.

By assumption, |F (it)| 6 M0 and |F (1+it)| 6 M1. Note that F (θ) is the integral
of (Tf)g with respect to the measure ν, since ϕ(θ) = f , ψ(θ) = g. Since the
norm of T as an operator from Lp(µ) to Lq(ν) is the supremum of the values
|F (θ)| over f and g of the indicated form, for obtaining the desired estimate it
suffices to apply the Hadamard three lines theorem from complex analysis, which
gives the estimate |F (θ + it)| 6 M1−θ

0 Mθ
1 for all t ∈ IR. �

In the real case the same is true with the estimate M 6 2M1−θ
0 Mθ

1 .

6.10.78. Example. If an operator T belongs to the spaces L
(
Lp(µ), Lp(ν)

)
and L

(
Lq(µ), Lq(ν)

)
with p < q, then its norms are finite in L

(
Lr(µ), Lr(ν)

)
with r ∈ [p, q]. If T is bounded as a mapping between L1(µ) and L1(ν) and also
between L∞(µ) and L∞(ν), then T has a finite norm in L

(
Lp(µ), Lp(ν)

)
for all

p ∈ (1,∞). This norm does not exceed 1 if this is true for the norms on L1 and
on L∞ (over C).

For other results, including the Marcinkiewicz interpolation theorem, see Ben-
nett, Sharpley [54], Bergh, Löfström [61], Krein, Petunin, Semenov [353], Lu-
nardi [398], and Triebel [607].

Exercises

6.10.79.◦ Give an example of a discontinuous function f : IR → IR with a closed
graph.

HINT: consider the function f(x) = 1/x, x 6= 0, f(0) = 0.

6.10.80.◦ Let X,Y be normed spaces and let lim
n→∞

Anx = Ax for all x ∈ X , where

A,An ∈ L(X,Y ). Prove that ‖A‖ 6 lim infn→∞ ‖An‖, and give an example where the
equality fails.

HINT: consider the one-dimensional projections generated by the standard orthonormal
basis in l2.

6.10.81.◦ Let X be a normed space and f ∈ X∗, ‖f‖ = 1. Prove that for every x the
equality dist(x,Ker f) = |f(x)| holds.
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6.10.82. Let Y be a closed subspace in a Banach space X and x0 ∈ X\Y . Prove that
there exists a functional l ∈ X∗ such that ‖l‖ = 1, l|Y = 0 and l(x0) = dist (x0, Y ).

HINT: let d = dist (x0, Y ); on the linear span of Y and x0 consider the functional
l(y + tx0) = dt. Clearly, l|Y = 0. Since ‖y + tx0‖ > d|t|, one has ‖l‖ 6 1. Take
{yn} ⊂ Y with ‖yn−x0‖ → d, which gives d = |l(x0)−l(yn)| 6 ‖l‖ ‖x0−yn‖ → d‖l‖,
whence ‖l‖ = 1. Now extend the functional l to X with the same norm.

6.10.83. Show that the cardinality of an infinite-dimensional Banach space is always
strictly smaller than that of its algebraic dual.

HINT: use a Hamel basis and Exercise 5.6.55 along with Cantor’s theorem.

6.10.84. Suppose that a linear space E is equipped with two non-equivalent norms.
Prove that the duals to E with respect to these norms are different as sets of linear functions.

HINT: if the unit ball U with respect to the first norm p1 is not bounded with respect
to the second norm p2, then it is not weakly bounded in (E, p2) and hence there exists a
functional l continuous in the norm p2 such that supu∈U |l(u)| = ∞.

6.10.85. Let Y be a linear subspace in a normed space X with separable dual X∗.
Prove that Y ∗ is separable.

HINT: apply the Hahn–Banach theorem.

6.10.86. Let X be a normed space such that X∗ is norm separable. Prove that X is
separable.

HINT: take a countable set {ln} dense in the unit sphere of X∗; for every n find xn
with ‖xn‖ = 1 and ln(xn) > 1/2. Let Y be the closure of the linear span of {xn}. Then
Y is separable. If Y 6= X , then there exists l ∈ X∗ with ‖l‖ = 1 and l|Y = 0. Let us take
ln with ‖l − ln‖ < 1/2. Then we obtain |ln(xn)| = |(ln − l)(xn)| 6 ‖ln − l‖ < 1/2,
which is a contradiction.

6.10.87.◦ Let Sn be the operator on L1[0, 2π] that to a function f associates the nth
partial sum Sn(f) of its Fourier series. Prove that supn ‖Sn‖ = ∞. Deduce from this that
there exist functions in L1[0, 2π] whose Fourier series do not converge in L1.

6.10.88.◦ Let X and Y be Banach spaces, A ∈ L(X,Y ), and let Ã : X/KerA→ Y ,
Ã[x] := Ax, be the operator on the quotient space induced by A.

(i) Prove that ‖Ã‖ = ‖A‖. (ii) Prove that ‖(Ã)∗y∗‖ = ‖A∗y∗‖, y∗ ∈ Y ∗.

6.10.89.◦ Let X and Y be normed spaces and let JX : X → X∗∗ and JY : Y → Y ∗∗

be the canonical embeddings. Prove that T ∗∗JX = JY T for every operator T ∈ L(X,Y ).
Hence T ∗∗JX (X) ⊂ JY (Y ).

6.10.90. Prove that every element l ∈ C[0, 1]∗ is the limit in the weak-∗ topology of a
sequence of functionals of the form x 7→

∑n
i=1 cix(ti), where t ∈ [0, 1] and ci are scalars.

HINT: l is given by a bounded Borel measure µ; one can partition [0, 1] into intervals
I1 = [0, 1/n), I2 = [1/n, 2/n) and so on and take ti = i/n, ci = µ(Ii).

6.10.91. Let C be a convex balanced set in a normed space X and let f be a linear
function on X such that the restriction of f to C is continuous at the origin. Prove that f
is uniformly continuous on C.

6.10.92. Let X and Y be normed spaces, let X be complete, and let T ∈ L(X,Y ) be
an open mapping. Prove that Y is complete.

6.10.93. (i) Prove that there exists a discontinuous linear mapping that maps a normed
space one-to-one onto a Banach space and has a closed graph. (ii) Prove that there exists
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a discontinuous linear mapping that maps a Banach space one-to-one onto a normed space
and has a closed graph.

HINT: (i) consider an injective compact diagonal operator on l2 and its inverse defined
on its range. (ii) Take a Hamel basis {hα} in l2 with ‖hα‖ = 1 and consider the norm
‖x‖ =

∑
α |xα|, x =

∑
α xαhα and the identity mapping to this norm from the standard

norm on l2.

6.10.94. Can a continuous linear operator map an incomplete normed space one-to-one
onto a complete one?

HINT: use the previous exercise.

6.10.95. Let X and Y be Banach spaces and T ∈ L(X,Y ). Show that if T takes
every bounded closed set to a closed set, then T (X) is closed. Construct an example
showing that the closedness of the images of closed balls can be insufficient for this.

HINT: considering the quotient by the kernel reduce the general case to an injective
operator and observe that if Txn → y, then either {xn} contains a bounded subsequence
of ‖xn‖ → ∞, so the vectors xn/‖xn‖ belong to the unit sphere whose image is closed,
but T (xn/‖xn‖) → 0.

6.10.96. Suppose that a sequence {xn} in a normed space is Cauchy in norm and
converges weakly to some vector x. Prove that {xn} converges to x in norm.

HINT: observe that this is true in complete spaces and consider the completion.

6.10.97. Let X be a normed space, f ∈ X∗, ‖f‖ = 1. Prove that f attains its maxi-
mum on the unit sphere precisely when f−1(1) has a vector of minimal norm. This is also
equivalent to the property that Ker f has a nearest element to some vector outside Ker f .

HINT: observe that if e is a vector of minimal norm in f−1(1), then ‖e‖ = 1, since in
case ‖e‖ > 1 we can find a unit vector u with f(u) > 1/‖e‖ and take v = u/f(u) with
f(v) = 1 and ‖v‖ < ‖e‖. On the other hand, if f(e) = 1 and ‖e‖ = 1, then there is no
element in f−1(1) with a smaller norm.

6.10.98. (i) Find an example of two closed linear subspaces H1 and H2 in a Hilbert
space for which H1 ∩ H2 = {0}, but the algebraic sum of H1 and H2 is not closed (see
also Exercise 5.6.57).

(ii)∗ Prove that such an example exists in every infinite-dimensional Banach space.
HINT: (i) consider the operator T on l2 given by the formula Tx = (2−nxn), let H1

be the graph of T in l2⊕l2, H2 := l2⊕{0} ⊂ l2⊕l2; then H1 and H2 possess the required
properties. (ii) Consider a separable infinite-dimensional Banach space X and observe that
X∗ contains a linearly independent weak-∗ dense sequence {fn}; let Ln be the intersection
of the hyperplanes f−1

i (0), i 6 2n; take linearly independent vectors xn and yn in the
algebraic complement of Ln to Ln+1 with ‖xn‖ > 1, ‖yn‖ > 1, ‖xn − yn‖ 6 1/n
and consider the closed linear spans of {xn} and {yn}. To see that their intersection
is zero, for each n, find linear combinations ϕn and ψn of f2n+1 and f2n+2 such that
ϕn(xn) = ψn(yn) = 0, ϕn(yn) = ψn(xn) = 1 and observe that the closed linear span of
xn, xn+1, . . . is contained in the intersection of ϕ−1

n (0) and f−1
i (0) with i > n.

6.10.99. Let Y and Z be closed subspaces in a Banach space X and let Y ∩ Z = 0.
Prove that the sum Y + Z is closed precisely when dist(SY , SZ ) > 0, where SY and SZ

are the unit spheres in Y and Z.

6.10.100. Apply the Hahn–Banach theorem to construct a continuous linear functional
l on the set of all bounded functions on the interval [0, 1] such that the action of l on
continuous functions coincides with the Riemann integral, but there exists a Borel set B for
which l(IB) does not coincide with the Lebesgue measure of B.
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6.10.101. Let X and Y be Banach spaces and A ∈ L(X,Y ). Prove that the equality
A∗(Y ∗) = X∗ holds precisely when A has the zero kernel and a closed range.

HINT: use that A has the zero kernel if and only if the range of A∗ is dense and apply
Corollary 6.8.6.

6.10.102. Let X and Y be Banach spaces and let X be reflexive. Prove that for every
operator A ∈ L(X,Y ) the image of any closed ball is closed.

HINT: use the weak compactness of balls in X .

6.10.103. Suppose that C[0, 1] is equipped with a Banach norm such that convergence
in this norm implies the pointwise convergence. Prove that this norm is equivalent to the
usual sup-norm.

HINT: use the closed graph theorem.

6.10.104. (Schur’s theorem) Prove that in the space l1 every weakly convergent se-
quence converges in norm. Deduce from this that l1 and L1[0, 1] are not linearly homeo-
morphic.

HINT: consider the case of weak convergence to zero and argue from the opposite.

6.10.105. (i) Prove that l1 has no subspaces linearly homeomorphic to l2. (ii) Let
A : l1 → l2 be a continuous linear surjection from Theorem 6.10.8. Prove that l1 has no
subspaces isomorphic to l1/KerA. In particular, l1 is not isomorphic to l2× (l1/KerA).

HINT: in (i) use Schur’s theorem and weak convergence to zero of vectors of the
standard basis in l2; derive (ii) from (i) and the fact that l2 is isomorphic to l1/KerA.

6.10.106.◦ Show that the unit ball in L1[0, 1] has no extreme points (see §5.4).

6.10.107. Prove that the spaces c0⊕c0 (the sum is equipped with the norm equal the
sum of the norms of components) and c0 are isomorphic (i.e., are linearly homeomorphic),
but are not isometric.

HINT: if ψ is a linear isometry between these spaces, then each element ψ(en, 0),
where {en} is the standard basis in c0, has 1 and −1 at positions of some finite set Sn.
Clearly, Sn ∩ Sm if n 6= k, since ‖en + ek‖ = 1, ‖en − ek‖ = 1. Hence there is n such
that the components of ψ(0, e1) with indices in Sn are strictly less than 1 in absolute value.
This leads to a contradiction, since the norm of (en, e1) equals 2.

6.10.108. Let X and Y be Banach spaces and let T ∈ L(X,Y ) be an operator such
that T ∗ is an isometry between Y ∗ and X∗. Is it true that T is an isometry?

6.10.109. Let f : l∞ → l∞, f : (xn) 7→
(
tan

(
(2π−1 arctanxn)2n+1

))
. Show that

f is continuous and maps l∞ one-to-one onto l∞, but f−1 is discontinuous at the origin.

6.10.110. Let L be a linear subspace of a normed space X . Prove that every norm
on L equivalent to the original one can be extended to a norm on X also equivalent to the
original one.

HINT: let U be the unit ball with respect to the original norm and let V be the unit
ball in L with respect to the equivalent norm. We can assume that U ∩ L ⊂ V . Now take
the Minkowski functional of the convex envelope of U ∪ V .

6.10.111. Show that on the spaces Lp[0, 1], 1 6 p <∞, there exists no linear lifting,
i.e., one cannot choose a representative Lf in every equivalence class f ∈ Lp[0, 1] such
that L(f + g)(t) = Lf(t) + Lg(t) and L(cf) = cf(t) for all f, g ∈ Lp[0, 1], all c ∈ IR1

and all t ∈ [0, 1], and Lf(t) > 0 for all t if f > 0 a.e.
HINT: if L is a linear lifting on Lp[0, 1], 1 6 p < ∞, then for every t the functional

lt(f) = L(f)(t) on Lp[0, 1] is linear and nonnegative on nonnegative functions, whence
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by Proposition 6.10.55 its continuity follows. Hence the functional lt is given by a function
gt ∈ Lp

′
[0, 1]. For every n we partition [0, 1] into n intervals Jn,1, . . . , Jn,n by the

points k/n. Let En,k :=
{
x : L(IJn,k )(x) = 1

}
and En :=

⋃n
k=1 En,k. Then λ(En) = 1

by properties of liftings. There is a point t ∈
⋂∞
n=1 En. For every n there is j(n) with

t ∈ En,j(n), i.e., L(IJn,j(n))(t) = 1. Since L(IJn,k ) = IJn,k a.e., we have

L(IJn,k )(t) =

∫ 1

0

IJn,k (s)gt(s) ds 6 n−1/p‖gt‖Lp′

for all k, which leads to a contradiction.

6.10.112. Extend Goldstein’s Theorem 6.7.6 to the case of the sphere: the unit sphere
of a Banach space X is dense in the unit sphere of X∗∗ with the topology σ(X∗∗, X∗).

6.10.113. Prove that every separable Banach space is linearly isometric to a closed
subspace in l∞.

HINT: find a sequence of functionals fn of unit norm on the given space X such that
‖x‖ = supn |fn(x)| for all x ∈ X; observe that it suffices to have the latter for all vectors
from a countable dense set.

6.10.114. Prove that on every separable Banach space there is an equivalent strictly
convex norm.

HINT: embed this space as a closed subspace in the space C[0, 1] with its sup-norm
and take the norm ‖x‖0 = ‖x‖C[0,1] + ‖x‖L2[0,1].

6.10.115.◦ Let Kn ∈ C([a, b]2), n ∈ IN, and let Kn be the operator with the inte-
gral kernel Kn on C[a, b]. Prove that Knf → f for every f ∈ C[a, b] precisely when

1) Knf → f for all f from a dense set, 2) sup
n

max
x

∫ b

a

|Kn(x, t)| dt <∞.

6.10.116. Let X be a Banach space and let Y be its n-dimensional subspace. Prove
that there exists a linear projection P : X → Y for which ‖P‖ 6 n.

HINT: use Proposition 6.10.45.

6.10.117. (R. Phillips) Prove that c0 is not complemented in l∞.
HINT: see [9, §2.5].

6.10.118. Let X be a reflexive Banach space. Prove that every bounded sequence
in X contains a weakly convergent subsequence.

6.10.119. Let K be a weakly compact set in a Banach space X such that X∗ contains
a countable set {fn} separating points of K. Show that

(
K,σ(X,X∗)

)
is a metrizable

compact space.
HINT: we can assume that ‖fn‖ 6 1; take the metric d(x, y) :=

∑∞
n=1 2−n|fn(x−y)|

and verify that the identity mapping from
(
K,σ(X,X∗)

)
to (K, d) is continuous, so it is

a homeomorphism.

6.10.120. Let X be a Banach space. Prove that the unit ball in X∗ is metrizable in
the weak-∗ topology if and only if X is separable.

HINT: use that if the ball is metrizable in the weak-∗ topology, then there is a countable
collection of vectors in X determining a basis of neighborhoods of zero in the weak-∗
topology.

6.10.121. Let X be an infinite-dimensional Banach space such that X∗ is norm sep-
arable. (i) Prove that there exists a sequence of vectors xn ∈ X with ‖xn‖ = 1 weakly
converging to zero. (ii) Prove that there exists a sequence of vectors xn ∈ X with ‖xn‖ = 1
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weakly converging to zero and a sequence of functionals ln ∈ X∗ with ln(xn) = 1 that is
weak-∗ convergent to zero. Consider l1 to see that (ii) can fail for spaces with nonseparable
duals.

HINT: (i) use that X is also separable (Exercise 6.10.86) and the unit ball in X∗ is
metrizable in the weak-∗ topology, hence one can pick points in the intersection of the unit
sphere with elements of a countable basis of zero in the weak-∗ topology. (ii) See [75,
Exercise 3.12.127].

6.10.122.∗ Let X be a Banach space and let C ⊂ X∗ be a weak-∗ compact set.
(i) Show that if C is norm separable, then the norm closure of the convex envelope of C is
also weak-∗ compact. (ii) Show that without the separability of C the conclusion in (i) can
be false by taking for C the set of Dirac measures δt in C[0, 1]∗.

HINT: (i) see [185, Exercise 106, p. 104]. (ii) Show that the norm closure of the set of
Dirac measures consists of all probability measures concentrated on countable sets, which
is not closed in the weak-∗ topology.

6.10.123. Let X be a metrizable compact set and let f : X → Y be a continuous
mapping, where Y is a Hausdorff space. Prove that the compact set f(X) is also metrizable.

HINT: the space C(X) is separable and C
(
f(X)

)
is isometrically embedded into it by

the mapping ϕ 7→ ϕ◦f . Hence C
(
f(X)

)
is also separable, which yields the metrizability

of f(X).

6.10.124. Let X and Y be Banach spaces and let A,B ∈ L(X,Y ). Prove that the
following conditions are equivalent: (i) A∗(Y ∗) ⊂ B∗(Y ∗),

(ii) there is a number k such that ‖Ax‖ 6 k‖Bx‖ for all x ∈ X .
HINT: if such k exists, then for every y∗ ∈ Y ∗ the functional f on B(X) given by

the formula f(Bx) := y∗(Ax) is well-defined and bounded, since

|y∗(Ax) 6 ‖y∗‖ ‖Ax‖ 6 k‖y∗‖ ‖Bx‖.

By the Hahn–Banach theorem it extends to an element z∗ ∈ Y ∗. Then B∗z∗ = A∗y∗,
whence A∗(Y ∗) ⊂ B∗(Y ∗). Conversely, if this inclusion holds, then A∗ = B̃∗C, where
the operator B̃∗ : Y ∗/KerB∗ → X∗ is generated by the operator B∗ and C is a continuous
operator (see Theorem 6.10.5). Then A∗∗ = C∗(B̃∗)∗, which gives the desired estimate
by the known equalities ‖A∗∗‖ = ‖A∗‖ = ‖A‖, ‖(B̃∗)∗‖ = ‖B̃∗‖ = ‖B∗‖ = ‖B‖ and
Exercise 6.10.88.

6.10.125. Let X and Y be Banach spaces and let A,B ∈ L(X,Y ) be such that
A(X) ⊂ B(X). (i) Prove that there exists a number k such that

‖A∗y∗‖
X∗ 6 k‖B∗y∗‖

X∗ , y∗ ∈ Y ∗.

(ii) Show that A∗∗(X∗∗) ⊂ B∗∗(X∗∗).
(iii) Show that if X is reflexive, then the estimate in (i) is equivalent to the inclusion

A(X) ⊂ B(X).
HINT: (i) under the same notation as in the hint to the previous exercise we have

A = B̃C, whence

‖A∗y∗‖
X∗ = ‖C∗B̃∗y∗‖

X∗ 6 ‖C∗‖ ‖B∗y∗‖
X∗

by Exercise 6.10.88. Now (ii) and (iii) follow from the previous exercise.

6.10.126. Let X and Y be Banach spaces, A ∈ L(X,Y ), A(X) = Y , and let Y be
separable. Prove that X contains a closed separable subspace Z such that A(Z) = Y .
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HINT: take a countable set {yn} dense in the unit ball of Y , use Remark 6.2.4 to pick
a bounded countable set {xn} ⊂ X with Axn = yn and take for Z the closure of the linear
span of {xn}; apply Lemma 6.2.1.

6.10.127.∗ Prove that the space C[0, 1] can be mapped linearly and continuously
onto c0, but not onto l1. Deduce from this that l1 embedded isometrically into C[0, 1]
is not complemented.

HINT: the first assertion is clear from Corollary 6.10.48; for the second assertion,
see [185, p. 274]. Note that every infinite-dimensional complemented closed subspace in
C[0, 1] contains a complemented subspace isomorphic to c0 (see [185, Proposition 5.6.4].
There is an unproved conjecture that every infinite-dimensional complemented subspace X
in C[0, 1] is isomorphic to the space C(K) for some metric compact spaceK; H. Rosenthal
proved that if X∗ is nonseparable, then this true with K = [0, 1].

6.10.128. (i) Prove that L1[0, 1] contains a complemented subspace isometric to l1.
(ii) Prove that L1[0, 1] embedded isometrically into C[0, 1] as a closed subspaces is not
complemented.

HINT: (i) take functions constant on [2−1−n, 2−n); (ii) apply (i) and the previous
exercise. According to an unproved conjecture, every infinite-dimensional complemented
subspace X in L1[0, 1] is isomorphic either to l1 or to L1[0, 1].

6.10.129.∗ (i) (I. Kaplansky) Let A be a set in a Banach space X and let a point x
belong to the closure of A in the weak topology. Prove that x belongs to the weak closure
of some countable subset in A.

(ii) Let A be a subset of a weakly compact set in a Banach space X and let a point x
belong to the closure of A in the weak topology. Prove that x is the limit of some sequence
{an} ⊂ A in the weak topology.

HINT: see [185, Theorems 4.49 and 4.50, p. 129–130].

6.10.130. (E. A. Lifshits [695]) A setW in a Banach space X is called ideally convex
if the series

∑∞
n=1 αnxn converges in X for every bounded sequence {xn} ⊂ W and

every sequence of numbers αn > 0 with
∑∞
n=1 αn = 1.

(i) Prove that in a finite-dimensional space any convex set is ideally convex.
(ii) Give an example of a convex set that is not ideally convex.
(iii) Prove that if a convex set is closed or open, then it is ideally convex.
(iv) Prove that if a set W is ideally convex and T : Z → X is a continuous linear

operator from a Banach space Z, then T−1(W ) is ideally convex.
(v) Prove that if a setW is ideally convex and bounded and T : X → Y is a continu-

ous linear operator to a Banach space Y , then T (W ) is ideally convex.
(vi) Let W be an ideally convex set. Prove that the interior of W coincides with the

interior of the closure of W and also with the algebraic kernel of W and the algebraic
kernel of the closure of W .

(vii) From the previous results deduce the Banach–Steinhaus theorem and the open
mapping theorem.

6.10.131. Let E be a closed linear subspace in C[0, 1] such that E ⊂ C1[0, 1]. Prove
that dimE <∞.

HINT: observe that C1[0, 1] belongs to the range of a compact operator and hence
cannot contain infinite-dimensional closed subspaces.

6.10.132.◦ Let X and Y be normed spaces and let A : X → Y be a linear mapping
continuous from the weak topology to the norm topology. Prove that A(X) is finite-
dimensional.
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HINT: use that a weak neighborhood of zero in an infinite-dimensional space contains
a subspace of finite codimension.

6.10.133. Let X and Y be Banach spaces and let JX : X → X∗∗ and JY : Y → Y ∗∗

be the canonical embeddings. Let S ∈ L(Y ∗, X∗) and S∗JX (X) ⊂ JY (Y ). Prove that
S = T ∗, where T ∈ L(X,Y ) is defined as follows: T = J−1

Y
S∗JX .

6.10.134. Let X be a normed space, M > 0, {xn} ⊂ X , {cn} ⊂ IR1. Prove that the
existence of a functional f ∈ X∗ with ‖f‖ 6 M and f(xn) = cn for all n is equivalent to
the condition that

∣∣∑n
i=1 λici

∣∣ 6 M
∥∥∑n

i=1 λixi
∥∥ for all n and all λi ∈ IR1.

6.10.135.◦ Suppose that we are given two sequences of numbers an > 0 and bn > 0,
where {bn} decreases to zero and {anbn} has a finite limit. Let us define an operator
T : C[0, 1] → c by the formula

(Tx)n := an

∫ bn

0

x(t) dt.

Prove that K is compact precisely when anbn → 0.
HINT: show that ‖K‖ = supn |anbn|.

6.10.136. (Holmgren’s theorem) Let µ and ν be probability measures on spaces Ω1

and let Ω2 and let K be a µ⊗ν-measurable function such that

C1 = ess sups

∫
Ω2

|K(s, t)| ν(dt) <∞, C2 = ess supt

∫
Ω1

|K(s, t)|µ(ds) <∞.

Prove that the operator

Kx(t) =

∫
Ω2

K(s, t)x(s)µ(ds), K : L2(µ) → L2(ν),

is bounded and ‖K‖ 6 C
1/2
1 C

1/2
2 .

HINT: let C2 > 0 and c = C
1/2
1 C

−1/2
2 ; for x ∈ L∞(µ) and y ∈ L∞(ν) such that

‖x‖L2(µ) 6 1 and ‖y‖L2(ν) 6 1, we have∣∣∣∣∫
Ω2

∫
Ω1

K(s, t)x(s)y(t)µ(ds) ν(dt)

∣∣∣∣ 6
∫

Ω2

∫
Ω1

|K(s, t)|
[
2−1c|y(t)|2

+ 2−1c−1|x(s)|2
]
µ(ds) ν(dt) 6 2−1cC2 + 2−1c−1C1 = C

1/2
1 C

1/2
2 ,

whence the desired bound follows.

6.10.137. (Schur’s test) Let µ and ν be nonnegative measures on measurable spaces
T and S, K > 0 a measurable function on T×S, and let ϕ > 0 and ψ > 0 be measurable
functions on T and S, respectively, such that∫

S

K(t, s)ψ(s) ν(ds) 6 αϕ(t) µ-a.e.,∫
T

K(t, s)ϕ(t)µ(dt) 6 βψ(s) ν-a.e.,

where α and β are numbers. Prove that the operator

K : L2(ν) → L2(µ), Kx(t) :=

∫
S

K(t, s)x(s) ν(ds),

is bounded and ‖K‖2 6 αβ. Deduce from this the assertion of the previous exercise.
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HINT: observe that

‖Kx‖2
L2(µ) 6

∫
T

(∫
S

K(t, s)ψ(s) ν(ds)

)(∫
S

K(t, s)ψ(s)−1|x(s)|2 ν(ds)

)
µ(dt)

6 α

∫
T

ϕ(t)

(∫
S

K(t, s)ψ(s)−1|x(s)|2 ν(ds)

)
µ(dt) 6 αβ‖x‖2

L2(ν).

6.10.138. Prove that the formula

Ax(t) =
1

t

∫ t

0

x(s) ds

defines a bounded operator on L2[0, 1].
HINT: apply Schur’s test to the kernel K(t, s) = t−1 if s < t and K(t, s) = 0 if s > t

and the function ϕ(t) = ψ(t) = t−1/2.

6.10.139. Let X and Y be Banach spaces and A ∈ L(X,Y ). Prove that the com-
pactness of the operator A is equivalent to the following condition: there exist functionals
ln ∈ Y ∗ with ‖ln‖ → 0 such that ‖Ax‖ 6 supn |ln(x)| for all x ∈ X .

Deduce from this assertion that the compactness of A is equivalent to the existence
of a bounded sequence {fn} in X∗ and a sequence of numbers λn such that λn → 0 and
‖Ax‖ 6 supn |λnfn(x)| for all x ∈ X .

HINT: if A ∈ K(X,Y ), then A∗ ∈ K(Y ∗, X∗). Let W be the unit ball in Y ∗.
Then A∗(W ) is contained in the closure of the convex envelope of the sequence ln → 0
(Proposition 5.5.7). Hence for every x ∈ X we have

‖Ax‖ = sup
f∈W

|f(Ax)| = sup
l∈A∗(W )

|l(x)| 6 sup
n

|ln(x)|.

Conversely, if the indicated condition is fulfilled, then S = {ln} ∪ {0} is compact in Y ∗.
The image of the unit ball U in X is totally bounded as a set in C(S) by the Arzelà–
Ascoli theorem, since |l(Ax) − l′(Ax)| 6 ‖A‖ ‖l − l′‖ whenever ‖x‖ 6 1, which means
the uniform Lipschitzness of the elements Ax as functions on S. The estimate from our
condition shows that ‖Ax‖ is estimated by the norm of Ax as an element of C(S). Hence
the set A(U) is totally bounded in Y . The second assertion follows from the first one.

6.10.140. Let X and Y be Banach spaces and let Y be separable. Prove that the
compactness of an operator A ∈ L(X,Y ) is equivalent to the following condition: for
every sequence {y∗n} ⊂ Y ∗ that is weak-∗ convergent to zero we have ‖A∗y∗n‖ → 0.

HINT: in one direction, use that the adjoint of a compact operator is compact. In the
opposite direction, use that for a bounded sequence of vectors xn ∈ X , the sequence of
vectors Axn ∈ Y regarded as functions on the unit ball in Y ∗ with a metric defining the
weak-∗ topology is uniformly equicontinuous due to the given condition.

6.10.141. Let X be a reflexive Banach space. Prove that every operator A ∈ L(X, l1)
is compact.

HINT: use that weakly convergent sequences in l1 are norm convergent.

6.10.142. (i) Let µ be a nonnegative measure on a measurable space (Ω,A) and let
(t, s) 7→ K(t, s) be a measurable function such that the function s 7→ K(t, s) belongs to
L2(µ) for µ-a.e. t and the function

Kx(t) =

∫
Ω

K(t, s)x(s)µ(ds)

belongs to L2(µ) for all x ∈ L2(µ). Prove that K is a bounded operator on L2(µ).
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(ii) Generalize (i) to the case where it is only known that, for every function x
from L2(µ), the function s 7→ K(t, s)x(s) is integrable and Kx ∈ L2(µ).

(iii) Show that if in (i) or (ii) the operator K is zero, then K(t, s) = 0 µ⊗µ-a.e.
(iv) Let µ be Lebesgue measure on [0, 1]. Prove that the unit operator I cannot be

represented in the form indicated in (ii).
(v) Let the measure µ in (ii) be finite. Show that the operator K : L2(µ)→L1(µ) is

compact, although it need not be compact as an operator with values in L2(µ).
(vi) Let µ be Lebesgue measure on [0, 1], 1/2 6 α < 1, and let Kα(t, s) = |t− s|−α

if t > s and Kα(t, s) = 0 if t 6 s. Prove that the integral kernel Kα generates a bounded
operator on L2[0, 1].

HINT: in (i) and (ii) apply the closed graph theorem (see [252, Theorem 3.10]). For
assertions (iii)–(vi), see [252, Theorem 8.1, Theorem 8.5, Theorem 13.8, Example 11.1].

6.10.143. (i) Let Ω ⊂ IRd be a bounded measurable set, let K0 be a bounded measur-
able function, and let K(t, s) = K0(t, s)|t − s|−α, where α < d. Prove that the operator
K defined by the kernel K on L2(Ω) is compact.

(ii) Prove that if the function K0 is continuous in t, then the operator K is compact
also on C(Ω).

6.10.144.◦ Is the operator Ax(t) = x(
√
t) compact on C[0, 1]? On L2[0, 1]?

6.10.145.◦ Suppose we are given a sequence of disjoint intervals [an, bn] in [0, 1].
Prove that the operator on L1[0, 1] defined by the integral kernel

K(t, s) =

∞∑
n=1

(bn − an)−1I[an,bn](t)I[an,bn](s),

is not compact.

6.10.146. Prove that every compact operator T on L1[0, 1] can be expressed in the

form Tx(t) =

∫ 1

0

K(t, s)x(s) ds with a measurable kertnel K( · , · ) such that the condition

sups ‖K( · , s)‖L1 <∞ is fulfilled.
HINT: see [164, p. 508].

6.10.147. Let X and Y be Banach spaces. An operator T : X → Y is called com-
pletely continuous if it takes weakly compact sets to norm compact sets.

(i) Prove that an operator T ∈ L(X,Y ) is completely continuous precisely when it
takes weakly convergent sequences to norm convergent sequences.

(ii) Prove that the set of completely continuous operators is a closed linear subspace
in L(X,Y ).

(iii) Prove that every operator T ∈ L(l1, Y ) is completely continuous. In particular,
the identity operator on l1 is completely continuous, but not compact.

6.10.148. Let X be an infinite-dimensional Banach space. Prove that X∗ with the
weak-∗ topology is not metrizable. Show that the completeness is important considering
the subspace E of finite sequences in c0 (here E∗ = l1, but σ(l1, E) 6= σ(l1, c0)).

HINT: observe that if such a metric exists, then the corresponding ball of radius 1/n
centered at zero in X∗ must contain a weak-∗ neighborhood of zero, hence must contain a
functional fn with ‖fn‖ = n, which is impossible, since the sequence {fn} converges to
zero pointwise, but is not norm bounded.

6.10.149. Give an example of a sequence of continuous linear functionals fn on a
Banach space X that is weak-∗ convergent to zero, but the convex envelope of {fn} is
contained in the sphere {f : ‖f‖ = 1}.
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HINT: consider X = c0 and coordinate functions; use that c∗0 = l1 and that convex
combinations of coordinate functions have unit norms in l1.

6.10.150.◦ Let H be a Hilbert space and let An ∈ L(H) be such that Anx → 0 for
every x ∈ H . Is it true that A∗

nx→ 0 for every x?

6.10.151. Let X and Y be normed spaces and let S : Y ∗ → X∗ be a linear mapping.
Prove that the existence of an operator T ∈ L(X,Y ) for which S = T ∗ is equivalent to
the continuity of S with respect to the topologies σ(Y ∗, Y ) and σ(X∗, X). In particular,
the continuity of S with respect to the weak-∗ topologies yields the norm continuity of S.

HINT: if the operator S is continuous with respect to the weak-∗ topologies, then, for
every x ∈ X , the functional y∗ 7→ Sy∗(x) on Y ∗ is continuous in the topology σ(Y ∗, Y ),
hence there exists an element Tx ∈ X for which Sy∗(x) = y∗(Tx); verify that T is the
required operator.

6.10.152. Let X = c0. The formula Sy =
(∑∞

n=1 yn, y2, y3, . . .
)
, y = (yn), defines

a bounded operator on X∗ = l1. Prove that S maps X∗ one-to-one onto X∗, i.e., is a
linear homeomorphism of X∗, but cannot be the adjoint for an operator T ∈ L(X).

HINT: one has the weak-∗ convergence en → 0, where {en} is the standard basis
in l1, but (Sen)1 = 1 for all n, i.e., S is not continuous in the weak-∗ topology.

6.10.153. LetX and Y be Banach spaces and let Y be separable. Let S ∈ L(Y ∗, X∗).
Prove that the existence of an operator T ∈ L(X,Y ) such that T ∗ = S is equivalent to the
following condition: if y∗n → 0 in the weak-∗ topology Y ∗, then Sy∗n → 0 in the weak-∗
topology X∗.

6.10.154. Prove Theorem 6.10.44 by an inductive construction without using the em-
bedding into C[0, 1] in the following stronger formulation: if we are given two sequences
{yn} ⊂ X and {fn} ⊂ X∗ and the latter separates points in X , then a Markushevich
basis {xn} in the linear span of {yn} can be chosen in such a way that the corresponding
sequence {ln} ⊂ X∗ exists in the linear span of {fn}.

HINT: see [185, p. 188].

6.10.155. Let X be an infinite-dimensional separable Banach space. Show that there
exist sequences {xn} ⊂ X and {ln} ⊂ X∗ such that li(xj) = δij , the linear span of {xn}
is dense in X , but there exists a nonzero element x ∈ X with ln(x) = 0 for all n.

HINT: take a sequence of linearly independent vectors ai with ‖ai‖ = 1 whose linear
span L is dense in X; take x ∈ X\L. By the Hahn–Banach theorem there exist fi ∈ X∗

with ‖fi‖ = 1, fi(x) = 0, fi(ai) = 1 and fi(aj) = 0 for j = 1, . . . , i − 1. One can
find vectors xn ∈ L and functionals ln in the linear span of {fi} with li(xj) = δij (see
Exercise 6.10.154); one has ln(x) = 0, since fi(x) = 0 for all i.

6.10.156. Let X be a real normed space with the closed unit ball U and let f, g ∈ X∗

be such that ‖f‖ = ‖g‖ = 1 and f−1(0) ∩ U ⊂ g−1([−ε, ε]), where 0 < ε < 1/2. Prove
that either ‖f − g‖ 6 2ε or ‖f + g‖ 6 2ε.

HINT: see [77, p. 128].

6.10.157. Prove that the functions ϕn = (n + 1/π)1/2zn form an orthonormal basis
in the Bergman space A2(U) (see Example 5.2.2), where U is the unit disc in C1.

HINT: verify that these functions are mutually orthogonal and that for every function
f(z) =

∑∞
n=0 cnz

n from A2(U) we have Parseval’s relation ‖f‖2
L2 =

∑∞
n=0 |(f, ϕn)|2.

To this end, it suffices to show that ‖f‖2
L2 = π

∑∞
n=0 |cn|

2/(n+ 1), which is verified by
evaluating the integral of |f(z)|2 over the disc of radius r < 1, where the series converges
uniformly.
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6.10.158. Let A(U) be the space of analytic functions on the open unit disc U in C1

that are continuous on the closure of U . Equip A(U) with the norm ‖ϕ‖ = maxz |ϕ(z)|.
Prove that any continuous linear functional on A(U) has the form

l(ϕ) = lim
q→1−

∞∑
k=0

qk
ϕ(k)(0)

k!
l(zk), sup

k
|l(zk)| <∞.

6.10.159. Let V be a nonempty convex closed set in a reflexive Banach space X .
Prove that every point x ∈ X has a nearest point in V .

6.10.160. LetX be a Banach space. Prove that the following conditions are equivalent:
(i) X is reflexive, (ii) every nonempty closed convex set in X has a point nearest to the
origin, (iii) for every closed separable linear subspace Y ⊂ X and every functional f ∈ Y ∗

with ‖f‖ = 1 the set f−1(1) contains a point nearest to the origin.
HINT: use Theorem 6.10.10 and Exercise 6.10.97.

6.10.161. Let X be a Banach space that is not reflexive. Prove that X∗ contains a
norm closed linear subspace that is not closed in the weak-∗ topology.

HINT: take an element F ∈ X∗∗ not belonging to the image of X under the canonical
embedding X ⊂ X∗∗ and consider the kernel of F .

6.10.162. Prove that every Efimov–Stechkin normed space (see Exercise 5.6.66) is
complete and reflexive.

6.10.163. Prove that for any infinite-dimensional separable Banach spaces X1 and X2

there is a compact operator T : X1 → X2 with the zero kernel and a dense range containing
an a priori given sequence from X2.

HINT: if X2 = l2, then one can take a sequence {ln} ⊂ X∗
1 separating points in X1

with ‖ln‖ 6 1 and set (Tx)n = 2−nln(x); if X1 = l2, then one can take a sequence of
unit vectors yn ∈ X2 with a dense linear span, set T0x =

∑∞
n=1 2−nxnyn and take the

operator T0/KerT0.

6.10.164. (i) Let E1 and E2 be Hilbert spaces and let A ∈ L(E1, E2). Suppose that
E2 is separable and the operator A is injective. Prove that E1 is also separable.

(ii) Extend (i) to the case where E1 and E2 are Banach spaces and E1 is reflexive.
Give an example showing that this can be false if E1 is not reflexive.

(iii) Show that if in (i) we do not assume the separability of E2, then one can assert
that the cardinality of an orthonormal basis of the space E1 does not exceed the cardinality
of an orthonormal basis in the space E2 and that there exists an operator B ∈ L(E2) such
that B(E2) = E1.

HINT: (i) the set A∗(E∗
2 ) is dense in E∗

1 by the injectivity of A; the separability of
E∗

1 implies the separability of E1. (ii) Embed E2 injectively into L2[0, 1]. (iii) Use the
density of A∗(E∗

2 ) in E∗
1 and Exercise 5.6.53.

6.10.165. Let H be a separable Hilbert space. (i) Give an example of bounded
operators A and B on H for which the sets A(H) and B(H) are dense in H , but
A(H) ∩B(H) = 0.

(ii) Let A ∈ L(H) and let A(H) be non-closed. Prove that there exists an operator
B ∈ L(H) such that B(H) is dense and A(H) ∩B(H) = 0.

HINT: see Theorem 7.10.18 in the next chapter.

6.10.166. Let X be a Banach space. A sequence of vectors xn ∈ X is called ω-
independent if the relation

∑∞
n=1 cnxn = 0 implies that cn = 0 for all n.

(i) Give an example of a linearly independent sequence that is not ω-independent.
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(ii) (V. I. Gurarii) Let {xn} ⊂ X and a nonzero x0 ∈ X be such that for some C > 0
and all n one has∑∞

k=n+1 ‖xk − x0‖ < C%n, %n := inf
{∥∥x0 −

∑n
k=1 αkxk

∥∥ : maxk6n |αk| > 1
}
.

Prove that {xn} is ω-independent.
(iii) Prove that every linearly independent sequence contains an infinite ω-independent

subsequence.
HINT: see [690].

6.10.167. (i) Prove that the norm on any infinite-dimensional normed space is not
continuous in the weak topology.

(ii) Prove that the norm on the space l1 is sequentially continuous in the weak topology,
although is not continuous.

(iii) Prove that the function f(x) =
∑∞
n=1 n

−2x2
n on l2 with the weak topology is

sequentially continuous, but is discontinuous at every point.
HINT: (i) observe that the norm is not bounded on weak neighborhoods of zero;

(ii) apply Schur’s theorem from Exercise 6.10.104; (iii) use the compactness of the operator
A : (xn) 7→ (n−1xn) to verify the weak sequential continuity (or use the uniform conver-
gence of the series on balls); to prove the discontinuity of f in the weak topology show that
the operator A cannot be bounded on a weak neighborhood of zero.

6.10.168. Let X be a Banach space. Prove that any two closed subspaces in X of
codimension 1 are linearly homeomorphic. Deduce from this that any two closed subspaces
in X of the same finite codimension are linearly homeomorphic.

HINT: see [185, Exercise 2.7, p. 53].

6.10.169. Prove that a Banach space X is linearly homeomorphic to X⊕IR1 precisely
when X is linearly homeomorphic to every closed hyperplane in X .

HINT: use the previous exercise and the fact that the spaceX is linearly homeomorphic
to H⊕ IR1, where H is a closed hyperplane in X . Note that there exists an infinite-
dimensional separable Banach space X that cannot be linearly homeomorphic to its closed
hyperplane (see [689]).

6.10.170.∗ Prove that every closed hyperplane in C[0, 1] is linearly homeomorphic to
the whole space C[0, 1].

HINT: see [185, Exercise 5.33, p. 153].

6.10.171.∗ Let l be a discontinuous linear function on a Banach space. (i) Can l−1(0)
be a second category set?

(ii)∗∗ Can l−1(0) be a first category set? (See [667].)

6.10.172. Prove that every bounded closed convex set in a Hilbert space is the inter-
section of some family of closed balls.

HINT: observe that every point in the complement of this set is outside some ball
containing this set. A more general result is mentioned in Theorem 6.10.36.

6.10.173. (i) Show that the closure of the convex envelope of an orthonormal basis in
l2 has no interior points. (ii)∗ Show that the closure of the convex envelope of a weakly
convergent sequence in an infinite-dimensional Banach space has no interior points.

HINT: (ii) see [185, p. 87].

6.10.174.∗ Prove that there exists a continuous linear surjection T : C[0, 1] → L2[0, 1].
HINT: see [185, p. 195] or [75, Exercise 3.12.188, p. 241].
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6.10.175. Let K be a compact space. Show that the extreme points (see §4.6) of the
unit ball of C(K) are the functions with values in {1,−1}, and the extreme points of the
unit ball of C(K)∗ are Dirac’s measures δk and the measures −δk, k ∈ K.

6.10.176.∗ Prove Theorem 5.6.5: if K1 and K2 are compact spaces, then C(K1) and
C(K2) are linearly isometric precisely when K1 and K2 are homeomorphic.

HINT: if h : K1 → K2 is a homeomorphism, then J(f) := f ◦h is a linear isometry
between C(K2) and C(K1). Conversely, if J : C(K1) → C(K2) is a linear isometry, then
J∗ : C(K2)∗ → C(K2)∗ is an isometry. For every k ∈ K2, the measure J∗δk is a point of
the unit ball in C(K1)∗. By Exercise 6.10.175 one has J∗δk = εkδh(k), where h(k) ∈ K1,
εk = 1 or εk = −1. It is readily seen that the mapping k 7→ εkδh(k) is continuous, since
J∗ is continuous with respect to the weak-∗ topologies. Moreover, the function k 7→ εk is
also continuous, because εk = εkδh(k)(1) = J∗δk(1) = J(1)(k). Therefore, the mapping
h : k 7→ h(k) is continuous. It gives the required homeomorphism. About recovering of
K by C(K) see [304, § 18.2.1].

6.10.177. (The Alekhno–Zabreiko theorem) Suppose that functions fn ∈ L∞[0, 1]
converge to zero in the topology σ

(
L∞, (L∞)∗

)
. Prove that fn(t) → 0 a.e.

HINT: if Λ is a lifting on L∞[0, 1], then Λ(fn)(t) → 0 for all t.

6.10.178. Prove that L1[0, 1] possesses the Dunford–Pettis property.
HINT: apply Exercise 6.10.177.

6.10.179. Let X be a Banach space. Prove that X∗ is complemented in X∗∗∗.
HINT: set P : X∗∗∗ → X∗, P (f) := f |X∗ (the Dixmier projection).

6.10.180. (The James space) Let J be the linear subspace in c0 consisting of all
elements with finite norm

‖x‖J := sup
(

(xj2 − xj1)2 + · · · + (xj2m − xj2m−1)2 + (xj2m+1)2
)1/2

,

where sup is taken over all finite collections 1 6 j1 < j2 < · · · < j2m+1. Prove that
the space J has codimension 1 under the canonical embedding into J∗∗ and hence is not
reflexive, however, it is linearly isometric to J∗∗. Deduce from this that J cannot be
isomorphic to X⊕X for a Banach space X . In particular, J is not isomorphic to J⊕J .

6.10.181. Let {hn} be a Schauder basis in a Hilbert space H and let {ln} be a
sequence of functionals on H such that li(hj) = δij and ‖ln‖ = ‖hn‖ = 1. Prove that
{hn} is an orthonormal basis.

HINT: if (h1, h2) 6= 0, then the linear span of h1 and h2 contains a unit vector
v ⊥ h1. Then h2 = (h2, v)v + (h2, h1)h1, whence we obtain 1 = |(h2, v)|2 + |(h2, h1)|2
and |(h2, v)| < 1. However, 1 = |l2(h2)| = |(h2, v)| |l2(v)|, which gives |l2(v)| > 1.
Hence ‖l2‖ > 1, a contradiction.

6.10.182.◦ Let {en} be a Schauder basis in a Banach spaceX . Prove thatK ⊂ X is to-
tally bounded precisely when for each ε>0 there is nε with supx∈K

∥∥∑∞
k=nε

ck(x)ek
∥∥6 ε,

where x =
∑∞
k=1 ck(x)ek.

6.10.183.∗ Let X be a Banach space with a Schauder basis {hn} and let {ln} be the
corresponding coordinate functionals. Prove that {ln} is a Schauder basis in X∗ precisely
when the linear span of {ln} is dense in X∗.

HINT: see [417, p. 405].

6.10.184. Let H be a Hilbert space, A ∈ L(H) and ‖A‖ 6 1. Prove that the operators
Sn := n−1(I +A+ · · · +An−1) converge pointwise to the projection onto Ker (A− I).
For more general results, see [354].
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6.10.185. Let H1 and H2 be mutually orthogonal infinite-dimensional closed sub-
spaces in a separable Hilbert space. Show that there is an infinite-dimensional closed
subspace H3 such that H1 ∩H3 = H2 ∩H3 = 0.

6.10.186. (Hardy’s inequality) Let p ∈ (1,+∞). Prove that the operator

A : (xn) 7→
(
x1,

x1 + x2

2
, . . . ,

x1 + x2 + · · · + xn
n

, . . .
)

is bounded on lp and its norm is p/(p− 1).
HINT: see [254, §9.8].

6.10.187. (i) Let H be an infinite-dimensional Hilbert space. Consider the mapping
(A,B) 7→ AB, L(H)×L(H) → L(H). Investigate the continuity and sequential continuity
of this mapping equipping L(H) with one of the following operator topologies: (a) the norm
topology, (b) the strong operator topology, (c) the weak operator topology. Consider also
different combinations of topologies on the factors and on the range.

(ii) Show that if H is separable, then on norm bounded sets in L(H) the weak and
strong operator topologies are metrizable.

HINT: investigating the sequential continuity use the fact that a pointwise convergent
sequence of operators is norm bounded. To disprove the continuity of multiplication in
the weak operator topology use the left and right shifts L and R on the space l2(Z) of
two-sided sequence, for which Ln → 0 and Rn → 0 in the weak operator topology, but
LnRn = I . To disprove the continuity of multiplication in the strong operator topology
observe that, given vectors v1, . . . , vn and u and a number ε > 0, one can find a bounded
operator A such that ‖Avi‖ < ε, i = 1, . . . , n, but ‖A2u‖ > 1.

6.10.188. Let A be a closed set in a Hilbert space contained in the open unit ball.
Prove that the closure of A in the weak topology is also contained in the open unit ball.

HINT: show that every point in the unit sphere can be separated from A by a closed
hyperplane.

6.10.189. Show that there is no sequence of closed subsets Fn in l2 contained in the
open unit ball and having the property that every closed set in l2 contained in the open unit
ball belongs to some Fn.

HINT: take the standard orthonormal basis {en} and observe that for any numbers
εn ∈ (0, 1/2) the set of vectors (1 − εn)en is closed.

6.10.190.∗ Let X be a Banach space and let L ⊂ X∗ be a linear subspace separating
points in X . Is it true that for every x ∈ X one has ‖x‖ = sup{l(x) : l ∈ L, ‖l‖61}?
Consider X = c0, L = {y = (yn) ∈ l1 : yk = k−1 ∑

n∈Ik
yn ∀ k ∈ I}, where

I, I1, I2, . . . are infinite disjoint sets whose union is IN.

6.10.191.∗ Construct an example of a Banach space X and a linear subspace L ⊂ X∗

with the following property: L is dense in X∗ in the topology σ(X∗, X), but the weak-∗
closure of the intersection of L with the unit ball ofX∗ contains no ball of a positive radius.

HINT: see [85, p. 275].

6.10.192.∗ (i) Prove that there exists a linear mapping A : l2→ l1 discontinuous on
every infinite-dimensional linear subspace in l2 (not necessarily closed).

(ii) Prove that for every linear mapping A from l1 to a Banach space E, there exists an
infinite-dimensional linear subspace L in l1 such that the restriction of A to L is continuous.

(iii) Prove that for every linear mapping A : l2→ l2, there exists an infinite-dimensional
linear subspace L in l2 such that the restriction of the mapping A to L is continuous. For
more general facts, see [676], [674], and [706].
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